Advertisement

Applied Physics A

, 125:213 | Cite as

One-dimensional SbSI crystals from Sb, S, and I mixtures in ethylene glycol for solar energy harvesting

  • Amit Kumar Pathak
  • Muvva D. Prasad
  • Sudip K. BatabyalEmail author
Article
  • 75 Downloads

Abstract

Crystalline SbSI nanorods were synthesized using mixed sonication-heating route using a high boiling solvent (ethylene glycol—EG). The use of a high boiling solvent reveals that the temperature is responsible for self-assembly of amorphous SbSI nuclei to 1D crystal. X-ray diffraction analysis of this material showed that 1D SbSI was single crystalline and grows along c-direction of its orthorhombic structure. The elemental composition of SbSI nanorods was estimated by EDXS and was found to be with 33.92% Sb, 32.74% S, and 33.34% I. The optical bandgap of the material was 1.88 eV. Application of SbSI as a photon-absorbing material in a carbon-based solar cell has been assessed. Its photo-conversion efficiency was of 0.035% under simulated solar radiation, with a short-circuit current density of 0.4 mA/cm2 and open-circuit voltage of 290 mV.

Notes

Acknowledgements

The authors acknowledge Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST) (Research Grant ECR/2015/000208) and Department of Science and Technology (DST) for research grant DST/INT/RFBR/P-241.

Supplementary material

339_2019_2476_MOESM1_ESM.docx (446 kb)
Supplementary material 1 (DOCX 446 KB)

References

  1. 1.
    NREL Efficiency Chart (2018). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed 19 Sep 2018
  2. 2.
    M.A. Mutalib, N.A. Ludin, N.A.A. Nik Ruzalman, V. Barrioz, S. Sepeai, M.A.M. Teridi, M.S. Su’ait, M.A. Ibrahim, K. Sopian, Progress towards highly stable and lead-free perovskite solar cells. Mater. Renew. Sustain. Energy 7, 7 (2018).  https://doi.org/10.1007/s40243-018-0113-0 CrossRefGoogle Scholar
  3. 3.
    H.C. Sansom, G.F.S. Whitehead, M.S. Dyer, M. Zanella, T.D. Manning, M.J. Pitcher, T.J. Whittles, V.R. Dhanak, J. Alaria, J.B. Claridge, M.J. Rosseinsky, AgBiI4 as a lead-free solar absorber with potential application in photovoltaics. Chem. Mater. 29, 1538–1549 (2017).  https://doi.org/10.1021/acs.chemmater.6b04135 CrossRefGoogle Scholar
  4. 4.
    B. Saparov, F. Hong, J.P. Sun, H.S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi, Thin-Film Preparation and Characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem. Mater. 27, 5622–5632 (2015).  https://doi.org/10.1021/acs.chemmater.5b01989 CrossRefGoogle Scholar
  5. 5.
    M.D. Prasad, L.D.V. Sangani, S.K. Batabyal, M.G. Krishna, Single and twinned plates of 2D layered BiI3 for use as nanoscale pressure sensors. Cryst. Eng. Commun. 20, 4857–4866 (2018).  https://doi.org/10.1039/C8CE00823J CrossRefGoogle Scholar
  6. 6.
    R. Nitsche, W.J. Merz, Photoconduction in ternary V–VI–VII compounds. J. Phys. Chem. Solids 13, 154–155 (1960).  https://doi.org/10.1016/0022-3697(60)90136-0 ADSCrossRefGoogle Scholar
  7. 7.
    E. Fatuzzo, G. Harbeke, W.J. Merz, R. Nitsche, H. Roetschi, W. Ruppel, Ferroelectricity in SbSI. Phys. Rev. 127 (1962) 2036–2037. https://link.aps.org/doi/10.1103/PhysRev.127.2036
  8. 8.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).  https://doi.org/10.1002/adma.200390087 CrossRefGoogle Scholar
  9. 9.
    E.I. Gerzanich, V.A. Lyakhovitskaya, V.M. Fridkin, B.A. Popovkin, in Current topics in materials science, vol. 10, ed. by E. Kaldis (North-Holland, Amsterdam, 1982), pp. 55–190Google Scholar
  10. 10.
    M. Nowak (2010) Photoferroelectric nanowires.  https://doi.org/10.5772/39496
  11. 11.
    R. Nie, H. Yun, M.-J. Paik, A. Mehta, B. Park, Y.C. Choi, S.I. Seok, Efficient solar cells based on light-harvesting antimony sulfoiodide. Adv. Energy Mater. 8, 1701901 (2018).  https://doi.org/10.1002/aenm.201701901 CrossRefGoogle Scholar
  12. 12.
    K.T. Butler, J.M. Frost, A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838–848 (2015).  https://doi.org/10.1039/c4ee03523b CrossRefGoogle Scholar
  13. 13.
    C. Haining, Y. Shihe, Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv. Mater. 29, 1603994 (2017).  https://doi.org/10.1002/adma.201603994 CrossRefGoogle Scholar
  14. 14.
    Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao, K. Fu, S.K. Batabyal, J. Zhang, Q. Xiong, L.H. Wong, N. Mathews, S.G. Mhaisalkar, Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797–6804 (2014).  https://doi.org/10.1021/nn501096h CrossRefGoogle Scholar
  15. 15.
    S.P. Madhusudanan, O.V. Krishna, K. Mohanta, S.K. Batabyal, Lead iodide microcrystals in carbon composite matrix for low power photodetectors. Chem. Sel. 2, 11025–11029 (2017).  https://doi.org/10.1002/slct.201701813 CrossRefGoogle Scholar
  16. 16.
    M. Bradley, M. Ashokkumar, F. Grieser, Multibubble sonoluminescence in ethylene glycol/water mixtures. J. Phys. Chem. B. 118, 337–343 (2014).  https://doi.org/10.1021/jp409075n CrossRefGoogle Scholar
  17. 17.
    G. Chen, W. Li, Y. Yuabcd, Q. Yang, Fast and low-temperature synthesis of one-dimensional (1D) single-crystalline SbSI microrod for high performance photodetector. RSC Adv. 5, 21859–21864 (2015).  https://doi.org/10.1039/C5RA01180A CrossRefGoogle Scholar
  18. 18.
    P. Kwolek, K. Pilarczyk, T. Tokarski, J. Mech, J. Irzmański, K. Szaciłowski, Photoelectrochemistry of n-type antimony sulfoiodide nanowires. Nanotechnology 26, 105710 (2015).  https://doi.org/10.1088/0957-4484/26/10/105710)ADSCrossRefGoogle Scholar
  19. 19.
    C.H. Perry, D.K. Agrawal, The Raman spectrum of ferroelectric SbSI. Solid State Commun. 8, 225–230 (1970).  https://doi.org/10.1016/0038-1098(70)90634-4 ADSCrossRefGoogle Scholar
  20. 20.
    M.K. Teng, M. Balkansk, M. Massot, M.K. Ziolkiewicz, Optical phonon analysis in the AVBVICVII compounds. Phys. Status Solidi. 62, 173–182 (1974).  https://doi.org/10.1002/pssb.2220620117 CrossRefGoogle Scholar
  21. 21.
    A.V. Gomonnai, I.M. Voynarovych, A.M. Solomon, Y.M. Azhniuk, A.A. Kikineshi, V.P. Pinzenik, M. Kis-Varga, L. Daroczy, V.V. Lopushansky, X-ray diffraction and Raman scattering in SbSI nanocrystals. Mater. Res. Bull. 38, 1767–1772 (2003).  https://doi.org/10.1016/s0025-5408(03)00181-8 CrossRefGoogle Scholar
  22. 22.
    D. Amoroso, S. Picozzi, Ab initio approach to structural, electronic, and ferroelectric properties of antimony sulphoiodide. Phys. Rev. B 93, 9 (2016).  https://doi.org/10.1103/PhysRevB.93.214106 CrossRefGoogle Scholar
  23. 23.
    M. Nowak, B. Kauch, P. Szperlich, Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 80, 3 (2009).  https://doi.org/10.1063/1.3103603 CrossRefGoogle Scholar
  24. 24.
    I. Cho, B.K. Min, S.W. Joo, Y. Sohn, One-dimensional single crystalline antimony sulfur iodide,s SbSI. Mater. Lett. 86, 132–135 (2012).  https://doi.org/10.1016/j.matlet.2012.07.050 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Amrita Centre for Industrial Research and Innovation (ACIRI), Amrita School of EngineeringAmrita VishwaVidyapeethamCoimbatoreIndia
  2. 2.Centre for Advanced Studies in Electronics Science and Technology, School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations