Applied Physics A

, 125:198 | Cite as

Surface and electro-optical properties of amorphous Sb2S3 thin films

  • Necmi Serkan Tezel
  • Fatma Meydaneri TezelEmail author
  • İ. Afşin Kariper


Sb2S3 thin films to be used in optoelectronic applications were produced on glass substrates, via chemical bath deposition method (CBD) at different pH values. The optical properties of these films such as T%, R%, n, k, ε1 and ε2 (real and imaginary) were calculated using the absorbance values measured at room temperature with UV spectrophotometer. Critical surface tension was measured by Zisman method, and found as 43.2, 97.4, 150.7 and 123.8 mN/m for pH: 9, 10, 11 and 12. Film thicknesses and surface roughness (Rq) were measured to be 125; 412; 205 and 138 nm, and 1.64; 30.31; 49.49 and 19.76 nm for pH: 9, 10, 11 and 12, respectively. Optical band gap (Egap) was calculated as 2.24; 2.11; 2.25 and 2.32 eV for pH: 9, 10, 11 and 12, respectively. Average electrical resistivity of the Sb2S3 thin films was calculated to be 35.41; 36.81; 36.76 and 28.72 Ωcm for pH: 9, 10, 11 and 12, respectively. According to the results obtained, usage areas of these films in optoelectronic applications are discussed.



This work was supported by the Karabük University Scientific Research Project Unit under Contract No: KBÜ-BAP-16/2-DS-111. The authors would like to thank to the Karabük University Scientific Research Project Unit.


  1. 1.
    S.A. Awe, Å Sandström, Electrowinning of antimony from model sulphide alkaline solutions. Hydrometallurgy. 137, 60–67 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Sinaoui, I. Trabelsi, F. Chaffar Akkar, F. Aousgi, M. Kanzari, Study of structural, morphological and optical properties of Sb2S3 thin films deposited by oblique angle deposition. Int. J. Thin Fil. Sci. Tec. 3, 19–25 (2014)CrossRefGoogle Scholar
  3. 3.
    M.H. Lakhdar, B. Ouni, M. Amlouk, Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films. Optik. 125, 2295–2301 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    P.G. Sheikhiabadi, M.S. -Niasari, F. Davar, Hydrothermal synthesis and optical properties of antimony sulfide micro and nano-size with different morphologies. Mater. Lett. 71, 168–171 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Maghraoui-Meherzi, T. Ben Nasr, N. Kamoun, M. Dachraoui, Structural, morphology and optical properties of chemically deposited Sb2S3 thin films. Phys. B. 405, 3101–3105 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    K.Y. Rajpure, C.H. Bhosale, Effect of composition on the structural, optical and electrical properties of sprayed Sb2S3 thin films prepared from non-aqueous medium. J. Phys. Chem. Solids. 61, 561–568 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    H. Maghraoui-Meherzi, T. Ben Nasr, N. Kamoun, M. Dachraoui, Physical properties of chemically deposited Sb2S3 thin films. C. R. Chimie. 14, 471–475 (2011)CrossRefGoogle Scholar
  8. 8.
    A.M. Salem, M.S. Selim, Structure and optical properties of chemically deposited Sb2S3 thin films. J. Phys. D Appl. Phys. 34, 12–17 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    M.Y. Versavel, J.A. Haber, Structural and optical properties of amorphous crystalline antimony sulfide thin-films. Thin Solid Films. 515, 7171–7176 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M. Calixto-Rodriguez, H. Martȋnez, Y. Peňa, O. Flores, H.E. Esparza-Ponce, A. Sanchez-Juarez, J. Campos-Alvarez, P. Reyes, A comparative study of the physical properties of Sb2S3 thin films treated with N2 AC plasma and thermal annealing in N2. Appl. Surf. Sci. 256, 2428–2433 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    N. Tigău, Structural characterization and optical properties of annealed Sb2S3 thin films. Rom. J. Phys. 53, 209–215 (2008)Google Scholar
  12. 12.
    P.A. Chate, S.D. Lakde, Characteristics of Sb2S3 thin films deposited by a chemical method. Int. J. Thin. Fil. Sci. Tech. 4, 237–242 (2015)Google Scholar
  13. 13.
    K.F. Abd-El-Rahman, A.A.A. Darwish, Fabrication and electrical characterization of p-Sb2S3/n-Si heterojunctions for solar cells application. Curr. Appl. Phys. 11, 1265–1268 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    R.-D. Sun, T. Tsuji, Preparation of antimony sulfide semiconductor nanoparticles by pulsed laser ablation in liquid. Appl. Surf. Sci. 348, 38–44 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    X. Cao, Y. Xie, L. Li, Crystallization of amorphous colloids: an effective approach for the rapid and large-scale preparation of antimony sulfide dendrites. J. Solid State Chem. 177, 202–206 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J.B. Biswal, N.V. Sawant, S.S. Garje, Deposition of rod-shaped antimony sulfide thin films from single-source antimony thiosemicarbazone precursors. Thin Solid Films. 518, 3164–3168 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A.M. Huerta-Flores, N.A. García-Gómez, S.M. de la Parra, E.M. Sánchez, Comparative study of Sb2S3, Bi2S3 and In2S3 thin film deposition on TiO2 by successive ionic layer adsorption and reaction (SILAR) method. Mater. Sci. Semicond. Process. 37, 235–240 (2015)CrossRefGoogle Scholar
  18. 18.
    I.S. Virt, I.O. Rudyj, I.V. Kurilo, I. Ye. L.F. Lopatynskyi, V.V. Linnik, P. Tetyorkin, Potera, G. Luka, Properties of Sb2S3 and Sb2Se3 thin films obtained by pulsed laser ablation. Semiconductors. 47, 1003–1007 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    B.B. Nayak, H.N. Acharya, Electrical and thermoelectric properties of Sb2S3, thin films prepared By The Dip-Dry method. Thin Solid Films. 122, 93–103 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    H. Chen, C. Zhu, F. Gan, Preparation and optical properties of Sb2S3 microcrystallite doped silica glasses by the sol–gel process. J. Sol–Gel Sci. Technol. 12, 181–184 (1998)CrossRefGoogle Scholar
  21. 21.
    S. Yuan, H. Deng, D. Dong, X. Yang, K. Qiao, C. Hu, H. Song, H. Song, Z. He, J. Tang, Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth. Solar Energy Mater. Solar Cells. 157, 887–893 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Huang, H. Woo, P. Wu, Q. Wang, G. Tan, J.W. Choi, Low-cost processed antimony sulfide nanocrystal photoanodes with increased efficiency and stability. J. Alloys Compd. 777, 866–871 (2019)CrossRefGoogle Scholar
  23. 23.
    X. Chen, X. Zhang, C. Shi, X. Li, Y. Qian, A simple biomolecule-assisted hydrothermal approach to antimony sulfide nanowires. Solid State Commun. 134, 613–615 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    R.G.A. Garcia, C.A.M. Avendaño, M. Pal, F.P. Delgado, N.R. Mathews, Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater. Sci. Semicond. Process. 44, 91–100 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Messina, M.T.S. Nair, P.K. Nair, Antimony sulfide thin films in chemically deposited thin film photovoltaic cells. Thin Solid Films. 515, 5777–5782 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    S. Shaji, L.V. Garcia, S.L. Loredo, B. Krishnan, J.A. Aguilar, T.K. Martinez, D.A. Das Roy, Avellaneda, Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl. Surf. Sci. 393, 369–376 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    V. Vinayakumar, C.R. Obregón Hernández, S. Shaji, D.A. Avellaneda, J.A. Aguilar Martinez, B. Krishnan, Effects of rapid thermal processing on chemically deposited antimony sulfide thin films. Mater. Sci. Semicond. Process. 80, 9–17 (2018)CrossRefGoogle Scholar
  28. 28.
    G. Zhu, X. Huang, M. Hojamberdiev, P. Liu, Y. Liu, G. Tan, J.-P. Zhou, Preparation of Sb2S3 film on functional organic self-assembled monolayers by chemical bath deposition. J. Mater. Sci. 46, 700–706 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    İA. Kariper, Kimyasal Banyo Depolama Yöntemi İnce Filmlerin Optik, Yapısal ve Elektriksel Özellikleri, Türkiye Alim Kitapları (OmniScriptum GmbH & Co. KG), Saarbrücken, 2015)Google Scholar
  30. 30.
    W.A. Zisman, in Relation of equilibrium contact angle to liquid and solid constitution in contact angle, wettability and adhesion, ed by R.F. Gould (Advances in Chemistry Senes, American Chem Soc, Washington, 1964), vol 43, pp. 1–51CrossRefGoogle Scholar
  31. 31.
    İA. Kariper, What is the effect of critical surface tension of PBSO3 thin film? Metall Mater. Trans. A. 45, 4398–4404 (2014)CrossRefGoogle Scholar
  32. 32.
    B. Pejova, I. Grozdanov, A. Tanusevski, Optical and thermal band gap energy of chemically deposited bismuth (III) selenide thin films. Mater. Chem. Phys. 83, 245–249 (2004)CrossRefGoogle Scholar
  33. 33.
    O. Madelung, Semicondutors Data Handbook, 3rd edn. (Springer, New York, 2004CrossRefGoogle Scholar
  34. 34.
    P.P. Hankare, S.D. Delekar, V.M. Bhuse, K.M. Garadkar, S.D. Sabane, L.V. Gavali, Synthesis and characterization of chemically deposited lead selenide thin films. Mater. Chem. Phys. 82, 505–508 (2003)CrossRefGoogle Scholar
  35. 35.
    A. Azmand, H. Kafashan, Al-doped ZnS thin films: physical and electrochemical characterizations. J. Alloys Compd. 779, 301–313 (2019)CrossRefGoogle Scholar
  36. 36.
    H. Kafashan, Z. Balak, Preparation and characterization of electrodeposited SnS:In thin films: effect of In dopant. Spectrochim. Acta, Part A 184, 151–162 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    F. Meydaneri Tezel, İA. Kariper, Synthesis, surface tension, optical and dielectric properties of bismuth oxide thin film. Mater. Sci. Poland. 35, 87–93 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Zhu, H. Wang, S. Xu, H. Chen, Sonochemical method for the preparation of monodisperse spherical and rectangular lead selenide nanoparticles. Langmuir. 18, 3306–3310 (2002)CrossRefGoogle Scholar
  39. 39.
    R.S. Mane, B.R. Sankapal, C.D. Lokhande, Non-aqueous chemical bath deposition of Sb2S3 thin films. Thin Solid Films. 353, 29–32 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    F. Zhao, J. Ma, B. Weng, D. Li, G. Bi, A. Chen, J. Xu, Z. Shi, MBE growth of PbSe thin film with a 9 × 105 cm– 2 etch-pits density on patterned (1 1 1) oriented Si substrate. J. Crystal Growth. 312, 2695–2698 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    J. Chao, B. Liang, X. Hou, Z. Liu, Z. Xie, B. Liu, W. Song, G. Chen, D. Chen, G. Shen, Selective synthesis of Sb2S3 nanoneedles and nanoflowers for high performance rigid and flexible photodetectors. Optics Express. 21, 13639–13647 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    C. Yuan, L. Zhang, W. Liu, C. Zhu, Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application. Solar Energy. 137, 256–260 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Necmi Serkan Tezel
    • 1
  • Fatma Meydaneri Tezel
    • 2
    Email author
  • İ. Afşin Kariper
    • 3
    • 4
  1. 1.Department of Electrical-Electronics Engineering, Faculty of EngineeringKarabük UniversityKarabükTurkey
  2. 2.Department of Metallurgy and Materials Science Engineering, Faculty of EngineeringKarabük UniversityKarabükTurkey
  3. 3.Department of Science Education, Faculty of EducationErciyes UniversityKayseriTurkey
  4. 4.Erciyes TeknoparkKayseriTurkey

Personalised recommendations