Applied Physics A

, 125:190 | Cite as

Hydrophobic Cu2O surfaces prepared by chemical bath deposition method

  • R. Akbari
  • M. R. MohammadizadehEmail author
  • M. Khajeh Aminian
  • M. Abbasnejad


In present work, hydrophobic copper(I) oxide (Cu2O) surfaces were fabricated by chemical bath deposition method. Copper oxide layers on glass slides were coated using copper sulfate as a precursor. To examine wetting properties of copper oxide surfaces, various samples were prepared at different numbers of coating cycles and sintering conditions (temperature, time, and atmosphere). Morphology, composition, and optical absorption of the copper oxide layers were characterized by profilometer, AFM, XRD, UV–Vis photospectroscopy, and water contact angle measurements. It was observed that hydrophobicity decreases by increasing oxygen amount of the sintering atmosphere. In fact, this is the result of an increase in the surface oxygen amount and consequently the increase of surface energy. An optimum thickness and surface morphology is obtained for hydrophobicity of these thin films which are due to air trapping at more narrow valleys and development of the Cassie–Baxter phase. Moreover, the effects of valley’s height and width on the wetting were investigated. It is shown that the width of the valleys is a more important factor in developing the Cassie–Baxter phase than the height of valleys. Furthermore, the obtained results show that all copper(І) oxide surfaces tend to a hydrophobicity behavior after 1 week drying at ambient conditions. The measured water contact angles of Cu2O layers were as high as 112°, without sintering or fatty acid modification. Nevertheless, it was enhanced up to 134° at the optimum sintering condition under nitrogen atmosphere. To the best of our knowledge, this is the first precisely study on wettability of Cu2O thin films prepared by this method at the various preparation conditions.



Partial financial support by the Research Council of the University of Tehran and its Science and Technology Park for this research under grant number 180-71773 is acknowledged. In addition, the authors are thankful of Iran nanotechnology initiative council and Iran national science foundation. R. Akbari is grateful to Prof. Frédéric Guittard for providing the opportunity to take WCA images in LPMC group in University of Nice Sophia Antipolis, Nice, France.

Supplementary material

339_2019_2470_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1040 KB)


  1. 1.
    S. Heidari, M.R. Mohammadizadeh, M. Mahjour-Shafiei, M.M. Larijani, M. Malek, Appl. Phys. A 121, 149 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    M.R. Mohammadizadeh, M. Bagheri, S. Aghabagheri, Y. Abdi, Appl. Surf. Sci. 350, 43 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S. Kimiagar, A. Nahal, M.R. Mohammadizadeh, T. Ghods Elahi, Phys. Scr. 88, 25604 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Kimiagar, M.R. Mohammadizadeh, Eur. Phys. J. Appl. Phys. 61, 10303 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Kazemi, M.R. Mohammadizadeh, Chem. Eng. Res. Des. 90, 1473 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Kazemi, M.R. Mohammadizadeh, Thin Solid Films 519, 6432 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M. Chekini, M.R. Mohammadizadeh, S.M. Vaez, Allaei, Appl. Surf. Sci. 257, 7179 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    G.R. Chagas, R. Akbari, G. Godeau, M.R. Mohammadizadeh, F. Guittard, T. Darmanin, ChemPlusChem 82, 1351 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Akbari, G.R. Chagas, G. Godeau, M.R. Mohammadizadeh, F. Guittard, T. Darmanin, Appl. Surf. Sci. 443, 191 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    J. Liu, X. Huang, Y. Li, Z. Li, Q. Chi, G. Li, Solid State Sci. 10, 1568 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Si, Z. Guo, Nanoscale 7, 5922 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    P. Zhang, F.Y. Lv, Energy 82, 1068 (2015)CrossRefGoogle Scholar
  13. 13.
    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)CrossRefGoogle Scholar
  14. 14.
    A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)CrossRefGoogle Scholar
  15. 15.
    X. Xu, G. Vereecke, C. Chen, G. Pourtois, S. Armini, N. Verellen, W. Tsai, D. Kim, E. Lee, C. Lin, P.V. Dorpe, H. Struyf, F. Holsteyns, V. Moshchalkov, J. Indekeu, S. De Gendt, ACS Nano 8, 885 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Zenkin, S. Kos, J. Musil, J. Am. Ceram. Soc. 97, 2713 (2014)CrossRefGoogle Scholar
  17. 17.
    W. Xi, Z. Qiao, C. Zhu, A. Jia, M. Li, Appl. Surf. Sci. 255, 4836 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J. Cao, J. Li, L. Liu, A. Xie, S. Li, L. Qiu, Y. Yuan, Y. Shen, J. Mater. Chem. A 2, 7953 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Wang, S. Lei, M. Xue, J. Ou, W. Li, Langmuir 30, 1281 (2014)CrossRefGoogle Scholar
  20. 20.
    S.L. Shinde, K.K. Nanda, RSC Adv. 2, 3647 (2012)CrossRefGoogle Scholar
  21. 21.
    S.M. Lee, K.S. Kim, E. Pippel, S. Kim, J.H. Kim, H.J. Lee, J. Phys. Chem. C 116(4), 2781 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Maimaiti, M. Nolan, S.D. Elliott, Phys. Chem. Chem. Phys. 16, 3036 (2014)CrossRefGoogle Scholar
  23. 23.
    F. Mumm, A.T.J. van Helvoort, P. Sikorski, ACS Nano 9, 2647 (2009)CrossRefGoogle Scholar
  24. 24.
    M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair, Appl. Surf. Sci. 150, 143 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    C. Chen, H. Xu, L. Xu, F. Zhang, J. Dong, H. Wang, RSC Adv. 3, 25010 (2013)CrossRefGoogle Scholar
  26. 26.
    W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, L. Zhang, Y. Sui, X. Zhou, H. Chen, G. Zou, CrystEngComm 13, 2871 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Ding, Y. Li, L. Yang, Z. Li, W. Xin, X. Liu, L. Pan, J. Zhao, Appl. Surf. Sci. 266, 395 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, Langmuir 21, 937 (2005)CrossRefGoogle Scholar
  29. 29.
    G. Wang, T.Y. Zhang, J. Colloid Interface Sci. 377, 438 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    T. Aytug, D.F. Bogorin, P.M. Paranthaman, J.E. Mathis, J.T. Simpson, D.K. Christen, Nanotechnology 25, 245602 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    I.A. Hassan, I.P. Parkin, S.P. Nair, C.J. Carmalt, J. Mater. Chem. B 2, 2855 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Pang, F. Gao, Q. Lu, Chem. Commun (Camb.) 9, 1076 (2009)CrossRefGoogle Scholar
  33. 33.
    L. Kong, X.H. Chen, L.G. Yu, Z.S. Wu, P.Y. Zhang, ACS Appl. Mater. Interfaces 7, 2616 (2015)CrossRefGoogle Scholar
  34. 34.
    R. Xiao, N. Miljkovic, R. Enright, E.N. Wang, Sci. Rep. 3, 1988 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    M. Zhao, L. Cao, Y. Sun, J. Lv, F. Shang, S. Mao, Y. Jiang, J. Xu, F. Wang, Z. Zhou, Y. Wei, G. He, M. Zhang, X. Song, Z. Sun, Appl. Phys. A 120, 335 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    A. Eskandari, P. Sangpour, M.R. Vaezi, Mater. Chem. Phys. 147, 1204 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Ristov, G.J. Sinadinovski, Thin Solid Films 123, 63 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    M.R. Johan, M.S.M. Suan, N.L. Hawari, H.A. Ching, Int. J. Electrochem. Sci. 6, 6094 (2011)Google Scholar
  39. 39.
    N. Saadaldin, M.N. Alsloum, N. Hussain, Energy Procedia 74, 1459 (2015)CrossRefGoogle Scholar
  40. 40.
    D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, J. Alloys Compd. 492, 26 (2010)CrossRefGoogle Scholar
  41. 41.
    M. Muhibbullah, M. Ichimura, JJAP 49, 081102 (2010)ADSGoogle Scholar
  42. 42.
    M. NAFEES, M. IKRAM, S. ALI, Dig. J. Nanomater. Biostruct. 10, 635 (2015)Google Scholar
  43. 43.
    S. S. Nikam, M. P. Suryawanshi, S. M. Bhosale, M. A. Gaikwad, P. A. Shinde, A. V. Moholkar, J. Mater. Sci. Mater. Electron. 27, 1897 (2016)CrossRefGoogle Scholar
  44. 44.
    A. T. Ravichandran, K. Dhanabalan, R. Chandramohan, A. Vasuhi, P. Parameswaran, Int. J. Inf. Res. Rev. 1, 007 (2014)Google Scholar
  45. 45.
    A. T. Ravichandran, K. Dhanabalan, A. Vasuhi, R. Chandramohan, S. Mantha, IEEE Trans. Nanotechnol. 14, 108 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    N. Serin, T. Serin, S. Horzum, Y. Celik, Semicond. Sci. Technol. 20, 398 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    T. Serin, S. Gurakar, N. Serin, N. Yıldırım, F. Ozyurt Kus, J. Phys. D Appl. Phys. 42, 225108 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    K. Mageshwari, R. Sathyamoorthy, Mater. Sci Semicond. Process. 16, 337 (2013)CrossRefGoogle Scholar
  49. 49.
    Q. Pan, M. Wang, Z. Wang, Electrochem. Solid State Lett. 12(3), A50 (2009)CrossRefGoogle Scholar
  50. 50.
    X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, RSC Adv. 5, 23401 (2015)CrossRefGoogle Scholar
  51. 51.
    S. Dhal, S. Chatterjee, U. Manju, L. C. Tribedi, K. V. Thulasiram, W. A. Fernandez, S. Chatterjee, Soft Matter. 11(47), 9211 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    D. Huang, T. Leu, Appl. Surf. Sci. 280, 25 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    P. Pi, K. Hou, C. Zhou, G. Li, X. Wen, S. Xu, J. Cheng, S. Wang, Appl. Surf. Sci. 396, 566 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    L. Kong, X. Chen, G. Yang, L. Yu, P. Zhang, Appl. Sur. Sci. 254, 7255 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • R. Akbari
    • 1
  • M. R. Mohammadizadeh
    • 1
    Email author
  • M. Khajeh Aminian
    • 2
  • M. Abbasnejad
    • 3
  1. 1.Supermaterials Research Lab. (SRL), Department of PhysicsUniversity of TehranTehranIran
  2. 2.Nanophysics and Magnetism Lab., Department of Physics, Faculty of ScienceUniversity of YazdYazdIran
  3. 3.Faculty of PhysicsShahid Bahonar University of KermanKermanIran

Personalised recommendations