Advertisement

Applied Physics A

, 125:159 | Cite as

Transport properties of 3D printed polymer nanocomposites for potential thermoelectric applications

  • Z. ViskadourakisEmail author
  • G. Perrakis
  • E. Symeou
  • J. Giapintzakis
  • G. Kenanakis
Article
  • 33 Downloads

Abstract

We report the transport and thermoelectric properties of three-dimensional printed samples, which are composed by polymer nanocomposites. For the purposes of the current study, the well-known fused deposition modeling three-dimensional printing method was employed. Commercially available PLA-based nanocomposite filaments, such as PLA–graphite and PLA–graphene, are used to produce mm-scale samples. Electrical conductivity and Seebeck coefficient were investigated, as a function of temperature. PLA–graphene samples exhibit effective thermoelectric performance, comparable to the other state-of-the art polymer nanocomposites, indicating that commercial polymer nanocomposites can be promising candidates for 3D printed thermoelectric devices.

Notes

Acknowledgements

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-02784; acronym: POLYSHIELD). Z.V. would like to thank Prof. Theodora Kyratsi (Mechanical and Manufacturing Engineering Department, University of Cyprus), for her limitless help and fruitful discussions.

References

  1. 1.
    M. Ziabari, D. Zebarjadi, Vashaee, A. Shakouri, Rep. Prog. Phys. 79, 095901 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    X. Shi, L. Chen, C. Uher, Int. Mater. Rev. 61, 379 (2016)CrossRefGoogle Scholar
  3. 3.
    K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, J. Am. Ceram. Soc. 96, 1 (2013)CrossRefGoogle Scholar
  4. 4.
    J.H. Bahk, H. Fang, K. Yazawa, A. Shakouri, J. Mater. Chem. C 3, 10362 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Gonçalves, P. Lima, B. Krause, P. Pötschke, U. Lafont, J. Gomes, C. Abreu, M. Paiva, J. Covas, J. Gonçalves, P. Lima, B. Krause, P. Pötschke, U. Lafont, J.R. Gomes, C.S. Abreu, M.C. Paiva, J.A. Covas, Polymers 10, 925 (2018)CrossRefGoogle Scholar
  6. 6.
    Q. Poudel, Y. Hao, Y. Ma, A. Lan, B. Minnich, X. Yu, D. Yan, A. Wang, D. Muto, X. Vashaee, J. Chen, M.S. Liu, G. Dresselhaus, Chen, Z. Ren, Science 320, 634 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    T.P. Hogan, A. Downey, J. Short, J. D’Angelo, C.I. Wu, E. Quarez, J. Androulakis, P.F.P. Poudeu, J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, S.D. Mahanti, E.J. Timm, H. Schock, F. Ren, J. Johnson, E.D. Case, J. Electron. Mater. 36, 704 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Y. He, T. Zhang, X. Shi, S.H. Wei, L. Chen, NPG Asia Mater. 7, 210 (2015)CrossRefGoogle Scholar
  9. 9.
    P.F.P. Poudeu, A. Guéguen, C.I. Wu, T. Hogan, M.G. Kanatzidis, Chem. Mater. 22, 1046 (2010)CrossRefGoogle Scholar
  10. 10.
    D.K. Bhat, S.U. Shenoy, J. Phys. Chem. C 121, 7123 (2017)CrossRefGoogle Scholar
  11. 11.
    H.Q. Yang, L. Miao, C.Y. Liu, C. Li, S. Honda, Y. Iwamoto, R. Huang, S. Tanemura, ACS Appl. Mater. Interfaces 7, 14263 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Li, N. Miao, J. Zhou, Z. Sun, Z. Liu, H. Xu, Nano Energy 43, 285 (2018)CrossRefGoogle Scholar
  13. 13.
    J.E. Rodríguez, L.C. Moreno, Mater. Lett. 65, 46 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, K. Cai, X. Yao, ACS Appl. Mater. Interfaces 3, 1163 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Wang, J. Schindler, J.A. Thomas, C.R. Kannewurf, M.G. Kanatzidis, Chem. Mater. 7, 1753 (1995)CrossRefGoogle Scholar
  16. 16.
    K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, R.A. Segalman, Nano Lett. 10, 4664 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J. Sun, M.L. Yeh, B.J. Jung, B. Zhang, J. Feser, A. Majumdar, H.E. Katz, Macromolecules 43, 2897 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    K. Zhang, M. Davis, J. Qiu, L. Hope-Weeks, S. Wang, Nanotechnology 23, 385701 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    J. Xiang, L.T. Drzal, Polymer (UK) 53, 4202 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Zhao, G.-S. Tang, Z.-Z. Yu, J.-S. Qi, Carbon N. Y. 50, 3064 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Zhang, Y. Zhang, S. Wang, Sci. Rep. 3, 3448 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A. Gebhardt, J.-S. Hötter, in Additive Manufacturing (Carl Hanser Verlag GmbH & Co. KG, München, 2016).  https://doi.org/10.3139/9781569905838.fm (ISBN 978-1-4987-1477-8)CrossRefGoogle Scholar
  23. 23.
    J.P. Kruth, M.C. Leu, T. Nakagawa, CIRP Ann. 47, 525 (1998)CrossRefGoogle Scholar
  24. 24.
    N. Guo, M.C. Leu, Front. Mech. Eng. 8, 215 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Ajioka, K. Enomoto, K. Suzuki, A. Yamaguchi, J. Environ. Polym. Degrad. 3, 225 (1995)CrossRefGoogle Scholar
  26. 26.
    J. Lunt, Polym. Degrad. Stab. 59, 145 (1998)CrossRefGoogle Scholar
  27. 27.
    J. Wang, H. Li, R. Liu, L. Li, Y.H. Lin, C.W. Nan, Compos. Sci. Technol. 157, 1 (2018)CrossRefGoogle Scholar
  28. 28.
    M.A. Zhang, J. Kandadai, S. Cech, Roth, S.A. Curran, J. Phys. Chem. B 110, 12910 (2006)CrossRefGoogle Scholar
  29. 29.
    F.A. dos Santos, M.I.B. Tavares, Polímeros 24, 561 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Maiza, M.T. Benaniba, G. Quintard, V. Massardier-Nageotte, Polimeros 25, 581 (2015)CrossRefGoogle Scholar
  31. 31.
    V. Kanakaiah, M. Latha, B. Sravan, A. Palanisamy, J.V. Rani, J. Electrochem. Soc. 161, A1586 (2014)CrossRefGoogle Scholar
  32. 32.
    A.K. Mishra, S. Ramaprabhu, AIP Adv. 1, 032152 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S. Sasi, A. Murali, S.V. Nair, A.S. Nair, K.R.V. Subramanian, J. Mater. Chem. A 3, 2717 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Karthika, Soft Nanosci. Lett. 2, 59 (2012)CrossRefGoogle Scholar
  35. 35.
    F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347 (2015)CrossRefGoogle Scholar
  36. 36.
    P.N. Khanam, D. Ponnamma, M.A. AL-Madeed, in Graphene-Based Polymer Nanocomposites in Electronics, ed. by K. Sadasivuni, D. Ponnamma, J. Kim, S. Thomas (Springer, Cham, 2015).  https://doi.org/10.1007/978-3-319-13875-6 (ISBN 978-3-319-13875-6)CrossRefGoogle Scholar
  37. 37.
    S. Doganay, C. Coskun, Kaynak, H.E. Unalan, Compos. Part B Eng. 99, 288 (2016)CrossRefGoogle Scholar
  38. 38.
    M.A. Cuiffo, J. Snyder, A.M. Elliott, N. Romero, S. Kannan, G.P. Halada, Appl. Sci. 7, 579 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Chandra, S. Bag, P. Das, D. Bhattacharya, P. Pramanik, Chem. Phys. Lett. 519, 59 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    J.P. Mofokeng, A.S. Luyt, T. Tábi, J. Kovács, J. Thermoplast. Compos. Mater. 25, 927 (2012)CrossRefGoogle Scholar
  41. 41.
    J. Alam, M. Alam, M. Raja, Z. Abduljaleel, L.A. Dass, Int. J. Mol. Sci. 15, 19924 (2014)CrossRefGoogle Scholar
  42. 42.
    G. Wu, L. Ma, Y. Wang, L. Liu, Y. Huang, Compos. Part A Appl. Sci. Manuf. 84, 1 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Compos. Part A Appl. Sci. Manuf. 41, 806 (2010)CrossRefGoogle Scholar
  44. 44.
    S.-H. Su, Y. Huang, S. Qu, W. Liu, R. Liu, L. Li, Diam. Relat. Mater. 81, 161 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    N. Wang, X. Zhang, X. Ma, J. Fang, Polym. Degrad. Stab. 93, 1044 (2008)CrossRefGoogle Scholar
  46. 46.
    M.P. Arrieta, MdelM. Castro-López, E. Rayón, L.F. Barral-Losada, J.M. López-Vilariño, J. López, M.V. González-Rodríguez, J. Agric. Food Chem. 62, 10170 (2014)CrossRefGoogle Scholar
  47. 47.
    A. Hussein, S. Sarkar, B. Kim, J. Mater. Sci. Technol. 32, 411 (2016)CrossRefGoogle Scholar
  48. 48.
    R. Gao, N. Hu, Z. Yang, Q. Zhu, J. Chai, Y. Su, L. Zhang, Y. Zhang, Nanoscale Res. Lett. 8, 32 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Nanoscale 5, 52 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    H. Wu, W. Zhao, H. Hu, G. Chen, J. Mater. Chem. 21, 8626 (2011)CrossRefGoogle Scholar
  51. 51.
    G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C.Y. Ryu, P.M. Ajayan, J. Am. Chem. Soc. 125, 9258 (2003)CrossRefGoogle Scholar
  52. 52.
    R.B. Valapa, G. Pugazhenthi, V. Katiyar, RSC Adv. 5, 28410 (2015)CrossRefGoogle Scholar
  53. 53.
    X. Cao, A. Mohamed, S.H. Gordon, J.L. Willett, D.J. Sessa, Thermochim. Acta 406, 115 (2003)CrossRefGoogle Scholar
  54. 54.
    A. Jalali, M.A. Huneault, S. Elkoun, J. Mater. Sci. 51, 7768 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    K. Gnanasekaran, T. Heijmans, S. van Bennekom, H. Woldhuis, S. Wijnia, G. de With, H. Friedrich, Appl. Mater. Today 9, 21 (2017)CrossRefGoogle Scholar
  56. 56.
    C. Hu, Z. Li, Y. Wang, J. Gao, K. Dai, G. Zheng, C. Liu, C. Shen, H. Song, Z. Guo, J. Mater. Chem. C 5, 2318 (2017)CrossRefGoogle Scholar
  57. 57.
    P. Manafi, I. Ghasemi, M. Karrabi, H. Azizi, P. Ehsaninamin, Soft Mater. 12, 433 (2014)CrossRefGoogle Scholar
  58. 58.
    H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, J. Ouyang, Macromol. Rapid Commun. 39, 1700727 (2018)CrossRefGoogle Scholar
  59. 59.
    S. Jia, D. Yu, Y. Zhu, Z. Wang, L. Chen, L. Fu, Polymers (Basel). 9, 528 (2017)CrossRefGoogle Scholar
  60. 60.
    Y. Chen, X. Yao, Q. Gu, Z. Pan, J. Polym. Eng. 26, 377 (2013)Google Scholar
  61. 61.
    K. Li, S. Cai, Shen, S. Chen, Synth. Met. 197, 58 (2014)CrossRefGoogle Scholar
  62. 62.
    Y. Du, S.Z. Shen, W. Yang, R. Donelson, K. Cai, P.S. Casey, Synth. Met. 161, 2688 (2012)CrossRefGoogle Scholar
  63. 63.
    Y. Lu, Y. Song, F. Wang, Mater. Chem. Phys. 138, 238 (2013)CrossRefGoogle Scholar
  64. 64.
    Y.Y. Aw, C.K. Yeoh, M.A. Idris, P.L. Teh, K.A. Hamzah, S.A. Sazali, Materials 11, 466 (2018)CrossRefGoogle Scholar
  65. 65.
    X. Li, L. Liang, M. Yang, G. Chen, C.Y. Guo, Org. Electron. 38, 2000 (2016)CrossRefGoogle Scholar
  66. 66.
    O.J. Botlhoko, J. Ramontja, S.S. Ray, RSC Adv. 7, 33751 (2017)CrossRefGoogle Scholar
  67. 67.
    M. Karkri, Thermal conductivity of biocomposite materials, in Biopolymer Composites in Electronics, ed. by K.K Sadasivuni, J-J. Cabibihan, D. Ponnamma, M.A.S.A Al-Maadeed, J. Kim (Elsevier, Amsterdam, 2016).  https://doi.org/10.1016/B978-0-12-809261-3.00004-8 CrossRefGoogle Scholar
  68. 68.
    B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi, D. Chapron, V. Toniazzo, D. Ruch, Thermochim. Acta 552, 106 (2013)CrossRefGoogle Scholar
  69. 69.
    Z. Antar, H. Noel, J.F. Feller, P. Glouannec, K. Elleuch, Mater. Sci. Forum 714, 115 (2012)CrossRefGoogle Scholar
  70. 70.
    Y. Han, J. Purdue Undergrad. Res. 6, 89 (2016)CrossRefGoogle Scholar
  71. 71.
    S.F. Costa, F.M. Duarte, J.A. Covas, Virtual Phys. Prototyp. 10, 35 (2015)CrossRefGoogle Scholar
  72. 72.
    T.J. Quill, M.K. Smith, T. Zhou, M.G.S. Baioumy, J.P. Berenguer, B.A. Cola, K. Kalaitzidou, T.L. Bougher, Appl. Compos. Mater. 25, 1205 (2018)ADSCrossRefGoogle Scholar
  73. 73.
    P. Lamberti, G. Spinelli, P.P. Kuzhir, L. Guadagno, C. Naddeo, V. Romano, R. Kotsilkova, P. Angelova, V. Georgiev, AIP Conf. Proc. 1981, 020158 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Z. Viskadourakis
    • 1
    Email author
  • G. Perrakis
    • 1
    • 2
  • E. Symeou
    • 3
  • J. Giapintzakis
    • 3
  • G. Kenanakis
    • 1
  1. 1.Institute of Electronic Structure and LaserFoundation for Research and Technology-HellasHeraklionGreece
  2. 2.Department of Materials Science and TechnologyUniversity of CreteHeraklionGreece
  3. 3.Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations