Advertisement

Applied Physics A

, 125:163 | Cite as

Metal organic vapor phase epitaxy of \(\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}\) thin films on Si(111) substrate

  • Albert RatajczakEmail author
  • Martina von der Ahe
  • Hongchu Du
  • Gregor Mussler
  • Detlev Grützmacher
Article
  • 38 Downloads

Abstract

Metal organic vapor phase epitaxy was employed for the growth of homogeneous and coalesced \(\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}\) thin films on Si(111) substrate. The influence of substrate pre-annealing on the layer morphology and composition was investigated. The annealing in \(\hbox {H}_{2}\) atmosphere in the presence of Te is important for the deposition of smooth layers. Te atoms passivate Si surface and support van der Waals epitaxy. The growth starts with van der Waals gap followed directly by \(\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}\) layer. The morphology of epitaxial material is sensitive to the gas velocity in the reactor during growth. Measured by atomic force microscope, root mean square roughness of grown \(\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}\) layers decreases significantly when the total gas flow in the reactor increases from 2100 to 2500 sccm. The layer composition depends strongly on the growth temperature. X-ray diffraction and energy dispersive X-ray spectroscopy confirm that the composition of the material shifts toward lower Ge content with the increase of the growth temperature. The material of the interest, its composition as well as surface morphology, exhibits high sensitivity to the growth conditions.

Notes

Acknowledgements

The authors gratefully acknowledge Konrad Wirtz for technical assistance, Stephany Bunte and Elmar Neumann for the EDX measurements, Doris Meertens and Maximilian Kruth for preparation of the HAADF-STEM lamellae by focused ion beam. Albert Ratajczak acknowledges valuable discussions with Hilde Hardtdegen (Ernst Ruska-Center, Forschungszentrum Jülich). The work was financially supported by the German Research Foundation (DFG) with the collaborative research center between the Research Centre Jülich and RWTH Aachen University SFB 917 Nanoswitches.

References

  1. 1.
    M. Wuttig, N. Yamada, Nat. Mater. 6, 824–832 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    E. Garća-Garća, A. Mendoza-Galván, Y. Vorobiev, E. Morales-Sánchez, J. Gonzalez-Hernández, G. Martńez, B.S. Chao, J. Vac. Sci. Technol. A 17, 1805–1810 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    T. Kato, K. Tanaka, Jpn. J. Appl. Phys. 44, 7340–7344 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, T. Kozaki, Jpn. J. Appl. Phys. 39, 770–774 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Nat. Mater. 4, 347–352 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    H.S. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Proc. IEEE 98, 2201–2227 (2010)CrossRefGoogle Scholar
  7. 7.
    S.H. Lee, Y.N. Hwang, S.Y. Lee. K.C. Ryoo, S.J. Ahn, H.C. Koo, C.W. Jeong, Y.-T. Kim, G.H. Koh, G.T. Jeong, H.S. Jeong, K. Kim, in Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004 (IEEE, Honolulu, 2004), pp. 20–21Google Scholar
  8. 8.
    Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M.G.  Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, G. Jeong, in (IEEE, San Francisco, 2012), pp. 46–48Google Scholar
  9. 9.
    V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, R. Calarco, J. Appl. Phys. 116, 054913 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    R.E. Simpson, P. Fons, A.V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, J. Tominaga, Nat. Nanotechnol. 6, 501–505 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J. Tominaga, P. Fons, A. Kolobov, T. Shima, T.C. Chong, R. Zhao, H.K. Lee, L. Shi, Jpn. J. Appl. Phys. 47, 5763–5766 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    X. Yu, J. Robertson, Sci. Rep. 5, 12612 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    T. Ohyanagi, M. Kitamura, M. Araidai, S. Kato, N. Takaura, K. Shiraishi, Appl. Phys. Lett. 104, 252106 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    W. Braun, R. Shayduk, T. Flissikowski, M. Ramsteiner, H.T. Grahn, H. Riechert, P. Fons, A. Kolobov, Appl. Phys. Lett. 94, 041902 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    E. Zallo, S. Cecchi, J.E. Boschker, A.M. Mio, F. Arciprete, S. Privitera, R. Calarco, Sci. Rep. 7, 1466 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    V. Bragaglia, F. Arciprete, W. Zhang, A.M. Mio, E. Zallo, K. Perumal, A. Giussani, S. Cecchi, J.E. Boschker, H. Riechert, S. Privitera, E. Rimini, R. Mazzarello, R. Calarco, Sci. Rep. 6, 23843 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J.E. Boschker, R. Calarco, Adv. Phys. X 2, 675–694 (2017)Google Scholar
  18. 18.
    M. Schuck, S. Rieß, M. Schreiber, G. Mussler, D. Grützmacher, H. Hardtdegen, J. Crys, Growth 420, 37–41 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Hardtdegen, S. Rieß, S.M. Schuck, P. Jost, H. Du, M. Bornhöfft, A. Schwedt, G. Mussler, V.D. Ahe, J. Mayer, G. Roth, D. Grützmacher, M. Mikulics, J. Alloys Compd. 679, 285–292 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Hardtdegen, P. Giannouls, III-Vs Rev. 11, 34–39 (1998)Google Scholar
  21. 21.
    M. Longo, O. Salicio, C. Wiemer, R. Fallica, A. Molle, M. Fanciulli, C. Giesen, B. Seitzinger, P.K. Baumann, M. Heuken, S. Rushworth, J. Cryst. Growth 310, 5053–5057 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    H. Du, Ultramicroscopy 151, 62–67 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Koma, Thin Solid Films 216, 72–76 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    J. Kampmeier, S. Borisova, L. Plucinski, M. Luysberg, G. Mussler, D. Grützmacher, Cryst. Growth Des. 15, 390–394 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Lanius, J. Kampmeier, S. Kölling, G. Mussler, P.M. Koenraad, D. Grützmacher, J. Cryst. Growth 453, 158–162 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    T. Matsunaga, N. Yamada, Phys. Rev. B 69, 104111 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    J.W. Park, S.H. Baek, T.D. Kang, H. Lee, Y.S. Kang, T.Y. Lee, D.S. Suh, K.J. Kim, C.K. Kim, Y.H. Khang, J.L.F. Da Silva, S.H. Wei, Appl. Phys. Lett. 93, 021914 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Peter Grünberg Institut (PGI 9), Forschungszentrum Jülich and Jülich-Aachen Research AllianceJülichGermany
  2. 2.Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum JülichJülichGermany
  3. 3.Central Facility for Electron Microscopy (GFE)RWTH Aachen UniversityAachenGermany

Personalised recommendations