Metal organic vapor phase epitaxy of \(\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}\) thin films on Si(111) substrate
- 38 Downloads
Abstract
Metal organic vapor phase epitaxy was employed for the growth of homogeneous and coalesced \(\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}\) thin films on Si(111) substrate. The influence of substrate pre-annealing on the layer morphology and composition was investigated. The annealing in \(\hbox {H}_{2}\) atmosphere in the presence of Te is important for the deposition of smooth layers. Te atoms passivate Si surface and support van der Waals epitaxy. The growth starts with van der Waals gap followed directly by \(\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}\) layer. The morphology of epitaxial material is sensitive to the gas velocity in the reactor during growth. Measured by atomic force microscope, root mean square roughness of grown \(\hbox {Ge}_{1}\hbox {Sb}_{2}\hbox {Te}_{4}\) layers decreases significantly when the total gas flow in the reactor increases from 2100 to 2500 sccm. The layer composition depends strongly on the growth temperature. X-ray diffraction and energy dispersive X-ray spectroscopy confirm that the composition of the material shifts toward lower Ge content with the increase of the growth temperature. The material of the interest, its composition as well as surface morphology, exhibits high sensitivity to the growth conditions.
Notes
Acknowledgements
The authors gratefully acknowledge Konrad Wirtz for technical assistance, Stephany Bunte and Elmar Neumann for the EDX measurements, Doris Meertens and Maximilian Kruth for preparation of the HAADF-STEM lamellae by focused ion beam. Albert Ratajczak acknowledges valuable discussions with Hilde Hardtdegen (Ernst Ruska-Center, Forschungszentrum Jülich). The work was financially supported by the German Research Foundation (DFG) with the collaborative research center between the Research Centre Jülich and RWTH Aachen University SFB 917 Nanoswitches.
References
- 1.M. Wuttig, N. Yamada, Nat. Mater. 6, 824–832 (2007)ADSCrossRefGoogle Scholar
- 2.E. Garća-Garća, A. Mendoza-Galván, Y. Vorobiev, E. Morales-Sánchez, J. Gonzalez-Hernández, G. Martńez, B.S. Chao, J. Vac. Sci. Technol. A 17, 1805–1810 (1999)ADSCrossRefGoogle Scholar
- 3.T. Kato, K. Tanaka, Jpn. J. Appl. Phys. 44, 7340–7344 (2005)ADSCrossRefGoogle Scholar
- 4.T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, T. Kozaki, Jpn. J. Appl. Phys. 39, 770–774 (2000)ADSCrossRefGoogle Scholar
- 5.M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Nat. Mater. 4, 347–352 (2005)ADSCrossRefGoogle Scholar
- 6.H.S. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Proc. IEEE 98, 2201–2227 (2010)CrossRefGoogle Scholar
- 7.S.H. Lee, Y.N. Hwang, S.Y. Lee. K.C. Ryoo, S.J. Ahn, H.C. Koo, C.W. Jeong, Y.-T. Kim, G.H. Koh, G.T. Jeong, H.S. Jeong, K. Kim, in Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004 (IEEE, Honolulu, 2004), pp. 20–21Google Scholar
- 8.Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M.G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, G. Jeong, in (IEEE, San Francisco, 2012), pp. 46–48Google Scholar
- 9.V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, R. Calarco, J. Appl. Phys. 116, 054913 (2014)ADSCrossRefGoogle Scholar
- 10.R.E. Simpson, P. Fons, A.V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, J. Tominaga, Nat. Nanotechnol. 6, 501–505 (2011)ADSCrossRefGoogle Scholar
- 11.J. Tominaga, P. Fons, A. Kolobov, T. Shima, T.C. Chong, R. Zhao, H.K. Lee, L. Shi, Jpn. J. Appl. Phys. 47, 5763–5766 (2008)ADSCrossRefGoogle Scholar
- 12.X. Yu, J. Robertson, Sci. Rep. 5, 12612 (2015)ADSCrossRefGoogle Scholar
- 13.T. Ohyanagi, M. Kitamura, M. Araidai, S. Kato, N. Takaura, K. Shiraishi, Appl. Phys. Lett. 104, 252106 (2014)ADSCrossRefGoogle Scholar
- 14.W. Braun, R. Shayduk, T. Flissikowski, M. Ramsteiner, H.T. Grahn, H. Riechert, P. Fons, A. Kolobov, Appl. Phys. Lett. 94, 041902 (2009)ADSCrossRefGoogle Scholar
- 15.E. Zallo, S. Cecchi, J.E. Boschker, A.M. Mio, F. Arciprete, S. Privitera, R. Calarco, Sci. Rep. 7, 1466 (2017)ADSCrossRefGoogle Scholar
- 16.V. Bragaglia, F. Arciprete, W. Zhang, A.M. Mio, E. Zallo, K. Perumal, A. Giussani, S. Cecchi, J.E. Boschker, H. Riechert, S. Privitera, E. Rimini, R. Mazzarello, R. Calarco, Sci. Rep. 6, 23843 (2016)ADSCrossRefGoogle Scholar
- 17.J.E. Boschker, R. Calarco, Adv. Phys. X 2, 675–694 (2017)Google Scholar
- 18.M. Schuck, S. Rieß, M. Schreiber, G. Mussler, D. Grützmacher, H. Hardtdegen, J. Crys, Growth 420, 37–41 (2015)CrossRefGoogle Scholar
- 19.H. Hardtdegen, S. Rieß, S.M. Schuck, P. Jost, H. Du, M. Bornhöfft, A. Schwedt, G. Mussler, V.D. Ahe, J. Mayer, G. Roth, D. Grützmacher, M. Mikulics, J. Alloys Compd. 679, 285–292 (2016)CrossRefGoogle Scholar
- 20.H. Hardtdegen, P. Giannouls, III-Vs Rev. 11, 34–39 (1998)Google Scholar
- 21.M. Longo, O. Salicio, C. Wiemer, R. Fallica, A. Molle, M. Fanciulli, C. Giesen, B. Seitzinger, P.K. Baumann, M. Heuken, S. Rushworth, J. Cryst. Growth 310, 5053–5057 (2008)ADSCrossRefGoogle Scholar
- 22.H. Du, Ultramicroscopy 151, 62–67 (2015)CrossRefGoogle Scholar
- 23.A. Koma, Thin Solid Films 216, 72–76 (1992)ADSCrossRefGoogle Scholar
- 24.J. Kampmeier, S. Borisova, L. Plucinski, M. Luysberg, G. Mussler, D. Grützmacher, Cryst. Growth Des. 15, 390–394 (2015)CrossRefGoogle Scholar
- 25.M. Lanius, J. Kampmeier, S. Kölling, G. Mussler, P.M. Koenraad, D. Grützmacher, J. Cryst. Growth 453, 158–162 (2016)ADSCrossRefGoogle Scholar
- 26.T. Matsunaga, N. Yamada, Phys. Rev. B 69, 104111 (2004)ADSCrossRefGoogle Scholar
- 27.J.W. Park, S.H. Baek, T.D. Kang, H. Lee, Y.S. Kang, T.Y. Lee, D.S. Suh, K.J. Kim, C.K. Kim, Y.H. Khang, J.L.F. Da Silva, S.H. Wei, Appl. Phys. Lett. 93, 021914 (2008)ADSCrossRefGoogle Scholar