Effect of Er3+ substitution on structural and magnetic properties of narrow size distributed ZnFe2−xErxO4 nanoparticles
- 8 Downloads
Abstract
Rare-earth ion (Er3+) substituted ZnFe2−xErxO4 nanoparticles at different Er concentrations (x = 0, 0.2, 0.4, 0.6, and 0.8) were synthesized by surfactant (polyethylene glycol) assisted co-precipitation method and studied for structural and magnetic properties of the synthesized nanoparticles. All the ZnFe2−xErxO4 ferrite nanoparticles exhibited an average size of around 25 nm. It was observed that substituent Er3+ predominantly occupy octahedral sublattice in spinel structure. The crystal lattice unit cell volume and magnetic disorder increased with increase of Er3+ concentration. The magnetic parameters such as spin-glass or superparamagnetic blocking temperature (TB), maximum magnetization (Mmax), remnant magnetization (Mr) and coercive field (Hc) of the ZnFe2−xErxO4 ferrite nanoparticles decreased with decreasing temperature (3–300 K). High and low magnetizations were observed for the nanoparticles at 3 K and 300 K, respectively. The observed magnetic properties were explained clearly by considering the substitution of Er3+ ion in to the octahedral sub-lattice and diminishing the magnetic exchange interactions between Fe3+ ions with [Ar] 3d5 and Er3+ ions with [Xe] 4f11 5d10 electronic configurations. The present studies confirm that Er3+ substitution does not enhance magnetic properties of ZnFe2O4 nanoferrites.
Notes
Acknowledgements
The authors gratefully acknowledge and thank the centre for crystal growth and VIT management for providing research facilities.
References
- 1.A.M. Abu-Dief, M.S. Abdelbaky, D. Martínez-Blanco, Z. Amghouz, S. García-Granda, Mater. Chem. Phys. 174, 164 (2016)CrossRefGoogle Scholar
- 2.S. Bullita, A. Casu, M.F. Casula, G. Concas, F. Congiu, A. Corrias, A. Falqui, D. Loche, C. Marras, Phys. Chem. Chem. Phys. 16, 4843 (2014)CrossRefGoogle Scholar
- 3.J. Mayekar, V. Dhar, S. Radha, Synthesis 5, 5 (2016)Google Scholar
- 4.G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, J. Alloy. Compd. 652, 346 (2015)CrossRefGoogle Scholar
- 5.R. Liu, M. Lv, Q. Wang, H. Li, P. Guo, X. Zhao, J. Magn. Magn. Mater. 424, 155 (2017)ADSCrossRefGoogle Scholar
- 6.M. Milanović, E.G. Moshopoulou, D. Stamopoulos, E. Devlin, K.P. Giannakopoulos, A.G. Kontos, K. Eleftheriadis, M.I. Gini, L.M. Nikolić, Ceram. Int. 39, 3235 (2013)CrossRefGoogle Scholar
- 7.R. Rameshbabu, R. Ramesh, S. Kanagesan, A. Karthigeyan, S. Ponnusamy, J. Mater. Sci. Mater. Electron. 25, 2583 (2014)CrossRefGoogle Scholar
- 8.M.Z. Shoushtari, A. Emami, S.E.M. Ghahfarokhi, J. Magn. Magn. Mater. 419, 572 (2016)ADSCrossRefGoogle Scholar
- 9.Y. Yang, X. Liu, Y. Yang, W. Xiao, Z. Li, D. Xue, F. Li, J. Ding, J. Mater. Chem. C 1, 2875 (2013)CrossRefGoogle Scholar
- 10.H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Powder Technol. 333, 153 (2018)ADSCrossRefGoogle Scholar
- 11.M. Li, X. Liu, T. Xu, Y. Nie, H. Li, C. Zhang, J. Magn. Magn. Mater. 439, 228 (2017)ADSCrossRefGoogle Scholar
- 12.T. Shinde, A. Gadkari, P. Vasambekar, J. Magn. Magn. Mater. 322, 2777 (2010)ADSCrossRefGoogle Scholar
- 13.C. Yao, Q. Zeng, G. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J. Jiang, J. Phys. Chem. C 111, 12274 (2007)CrossRefGoogle Scholar
- 14.A. Manohar, C. Krishnamoorthi, J. Photochem. Photobiol. B 173, 456 (2017)CrossRefGoogle Scholar
- 15.H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677 (2015)CrossRefGoogle Scholar
- 16.V. Blanco-Gutiérrez, M.J. Torralvo-Fernández, R. Sáez-Puche, J. Phys. Chem. C 114, 1789 (2010)CrossRefGoogle Scholar
- 17.Y. Zhang, Q. Shi, J. Schliesser, B.F. Woodfield, Z. Nan, Inorg. Chem. 53, 10463 (2014)CrossRefGoogle Scholar
- 18.H. Wu, G. Wu, L. Wang, Powder Technol. 269, 443 (2015)CrossRefGoogle Scholar
- 19.V. Blanco-Gutierrez, F. Jimenez-Villacorta, P. Bonville, M.J. Torralvo-Fernández, R. Saez-Puche, J. Phys. Chem. C 115, 1627 (2011)CrossRefGoogle Scholar
- 20.D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, J. Colloid Interface Sci. 533, 481 (2019)ADSCrossRefGoogle Scholar
- 21.C. Jesus, E. Mendonça, L. Silva, W. Folly, C. Meneses, J. Duque, J. Magn. Magn. Mater. 350, 47 (2014)ADSCrossRefGoogle Scholar
- 22.B.D. Prasad, H. Nagabhushana, K. Thyagarajan, B. Nagabhushana, D. Jnaneshwara, S. Sharma, C. Shivakumara, N. Gopal, S.-C. Ke, R. Chakradhar, J. Magn. Magn. Mater. 358, 132 (2014)ADSCrossRefGoogle Scholar
- 23.G. Thirupathi, R. Singh, IEEE Trans. Magn. 50, 1 (2014)CrossRefGoogle Scholar
- 24.V. Blanco-Gutiérrez, E. Urones-Garrote, M.a.J. Torralvo-Fernández, R. Sáez-Puche, Chem. Mater. 22, 6130 (2010)CrossRefGoogle Scholar
- 25.M. Veena, A. Somashekarappa, G. Shankaramurthy, H. Jayanna, H. Somashekarappa, J. Magn. Magn. Mater. 419, 375 (2016)ADSCrossRefGoogle Scholar
- 26.V.J. Angadi, L. Choudhury, K. Sadhana, H.-L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R. Anavekar, K. Praveena, J. Magn. Magn. Mater. 424, 1 (2017)ADSCrossRefGoogle Scholar
- 27.P. Thakur, R. Sharma, V. Sharma, P. Barman, M. Kumar, D. Barman, S. Katyal, P. Sharma, J. Magn. Magn. Mater. 432, 208 (2017)ADSCrossRefGoogle Scholar
- 28.H. Yoon, J.S. Lee, J.H. Min, J. Wu, Y.K. Kim, Nanoscale Res. Lett. 8, 530 (2013)ADSCrossRefGoogle Scholar
- 29.H.R. Ebrahimi, M. Parish, G.R. Amiri, B. Bahraminejad, S. Fatahian, J. Magn. Magn. Mater. 414, 55 (2016)ADSCrossRefGoogle Scholar
- 30.N. Kumari, V. Kumar, S. Khasa, S. Singh, Ceram. Int. 41, 1907 (2015)CrossRefGoogle Scholar
- 31.N. Kumari, V. Kumar, S. Singh, J. Alloy. Compd. 622, 628 (2015)CrossRefGoogle Scholar
- 32.A. Munir, F. Ahmed, M. Saqib, M. Anis-ur-Rehman. J. Magn. Magn. Mater. 397, 188 (2016)ADSCrossRefGoogle Scholar
- 33.M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A. Başaran, J. Magn. Magn. Mater. 321, 157 (2009)ADSCrossRefGoogle Scholar
- 34.M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S. Toprak, J. Magn. Magn. Mater. 322, 866 (2010)ADSCrossRefGoogle Scholar
- 35.C. Srinivas, B. Tirupanyam, A. Satish, V. Seshubai, D. Sastry, O. Caltun, J. Magn. Magn. Mater. 382, 15 (2015)ADSCrossRefGoogle Scholar
- 36.P. Thakur, R. Sharma, M. Kumar, S. Katyal, N. Negi, N. Thakur, V. Sharma, P. Sharma, Mater. Res. Express 3, 075001 (2016)ADSCrossRefGoogle Scholar
- 37.A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Superlattices Microstruct. 64, 118 (2013)ADSCrossRefGoogle Scholar
- 38.S. Masoudpanah, S.S. Ebrahimi, M. Derakhshani, S. Mirkazemi, J. Magn. Magn. Mater. 370, 122 (2014)ADSCrossRefGoogle Scholar
- 39.N. Sharma, P. Aghamkar, S. Kumar, M. Bansal, R. Tondon, J. Magn. Magn. Mater. 369, 162 (2014)ADSCrossRefGoogle Scholar
- 40.R. Tholkappiyan, K. Vishista, Phys. B 448, 177 (2014)ADSCrossRefGoogle Scholar
- 41.L. Yang, Z. Wang, B. Zhai, Y. Shao, Z. Zhang, Y. Sun, J. Yang, Ceram. Int. 39, 8261 (2013)CrossRefGoogle Scholar
- 42.B. Zhao, Z. Nan, J. Mater. Chem. 22, 6581 (2012)CrossRefGoogle Scholar
- 43.I. Soibam, S. Phanjoubam, H. Sharma, H. Sarma, C. Prakash, Phys. B 404, 3839 (2009)ADSCrossRefGoogle Scholar
- 44.R.R. Shahraki, M. Ebrahimi, S.S. Ebrahimi, S. Masoudpanah, J. Magn. Magn. Mater. 324, 3762 (2012)ADSCrossRefGoogle Scholar
- 45.S.L. Darshane, R.G. Deshmukh, S.S. Suryavanshi, I.S. Mulla, J. Am. Ceram. Soc. 91, 2724 (2008)CrossRefGoogle Scholar
- 46.J. Wan, X. Jiang, H. Li, K. Chen, J. Mater. Chem. 22, 13500 (2012)CrossRefGoogle Scholar
- 47.L. Han, X. Zhou, L. Wan, Y. Deng, S. Zhan, J. Environ. Chem. Eng. 2, 123 (2014)CrossRefGoogle Scholar
- 48.M. Drofenik, M. Kristl, D. Makovec, Z. Jagličić, D. Hanžel, Mater. Manuf. Processes 23, 603 (2008)CrossRefGoogle Scholar
- 49.M. Roy, H. Verma, J. Magn. Magn. Mater. 306, 98 (2006)ADSCrossRefGoogle Scholar
- 50.F. Li, H. Wang, L. Wang, J. Wang, J. Magn. Magn. Mater. 309, 295 (2007)ADSCrossRefGoogle Scholar
- 51.T.L. Cheng, M. Zheng, Z.S. Wang, Z.L. Chen, in Study on Synthesizing and Characterizing of Zinc Ferrite Nanoparticles, 2012 (Trans Tech Publ), p. 545Google Scholar
- 52.M. Maletin, Ž Cvejić, S. Rakić, L.M. Nikolić, V.V. Srdić, in Low Temperature Synthesis of Nanocrystalline ZnFe2O4 Powders, 2006 (Trans Tech Publ), p. 91Google Scholar
- 53.P.A. Kumar, J. Shrotri, S. Kulkarni, C. Deshpande, S. Date, Mater. Lett. 27, 293 (1996)CrossRefGoogle Scholar
- 54.Y. Köseoğlu, Ceram. Int. 39, 4221 (2013)CrossRefGoogle Scholar
- 55.Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, J. Nanopart. Res. 13, 2235 (2011)ADSCrossRefGoogle Scholar
- 56.A. Yao, F. Ai, D. Wang, W. Huang, X. Zhang, Mater. Sci. Eng. C 29, 2525 (2009)CrossRefGoogle Scholar
- 57.M. Shoba, S. Kaleemulla, J. Phys. Chem. Solids 111, 447 (2017)ADSCrossRefGoogle Scholar
- 58.B. Jeyadevan, C. Chinnasamy, K. Shinoda, K. Tohji, H. Oka, J. Appl. Phys. 93, 8450 (2003)ADSCrossRefGoogle Scholar
- 59.K. Velmurugan, V.S.K. Venkatachalapathy, S. Sendhilnathan, Mater. Res. 13, 299 (2010)CrossRefGoogle Scholar
- 60.J. Philip, G. Gnanaprakash, G. Panneerselvam, M. Antony, T. Jayakumar, B. Raj, J. Appl. Phys. 102, 054305 (2007)ADSCrossRefGoogle Scholar
- 61.C.S. Kumar, in Magnetic Nanomaterials, Vol. 4 (Wiley, Hoboken, 2009)Google Scholar
- 62.N. Najmoddin, A. Beitollahi, E. Devlin, H. Kavas, S.M. Mohseni, J. Åkerman, D. Niarchos, H. Rezaie, M. Muhammed, M.S. Toprak, Microporous Mesoporous Mater. 190, 346 (2014)CrossRefGoogle Scholar
- 63.P. Poddar, J. Gass, D. Rebar, S. Srinath, H. Srikanth, S. Morrison, E. Carpenter, Journal of magnetism and magnetic materials 307, 227 (2006)ADSCrossRefGoogle Scholar
- 64.R. Singh, G. Thirupathi, in Magnetic Spinels-Synthesis, Properties and Applications (InTech, 2017)Google Scholar
- 65.R. Topkaya, A. Baykal, A. Demir, J. Nanoparticle Res. 15, 1359 (2013)ADSCrossRefGoogle Scholar
- 66.R. Sai, S.D. Kulkarni, S.S. Bhat, N.G. Sundaram, N. Bhat, S. Shivashankar, RSC Adv. 5, 10267 (2015)CrossRefGoogle Scholar
- 67.C. Upadhyay, H. Verma, V. Sathe, A. Pimpale, J. Magn. Magn. Mater. 312, 271 (2007)ADSCrossRefGoogle Scholar
- 68.H. Nathani, R. Misra, Mater. Sci. Eng. B 113, 228 (2004)CrossRefGoogle Scholar
- 69.M.M. Selvi, D. Chakraborty, C. Venkateswaran, J. Magn. Magn. Mater. 423, 39 (2017)ADSCrossRefGoogle Scholar
- 70.E. Mendonça, C. Jesus, W. Folly, C. Meneses, J. Duque, A. Coelho, J. Appl. Phys. 111, 053917 (2012)ADSCrossRefGoogle Scholar
- 71.S. Thakur, S. Katyal, M. Singh, J. Magn. Magn. Mater. 321, 1 (2009)ADSCrossRefGoogle Scholar
- 72.J. Xu, D. Xie, C. Teng, X. Zhang, C. Zhang, Y. Sun, T.-L. Ren, M. Zeng, X. Gao, Y. Zhao, J. Appl. Phys. 117, 224101 (2015)ADSCrossRefGoogle Scholar
- 73.U. Khan, N. Adeela, C. Wan, M. Irfan, S. Naseem, S. Riaz, M. Iqbal, X. Han, Superlattices Microstruct. 92, 374 (2016)ADSCrossRefGoogle Scholar
- 74.L.W. Yeary, J.-W. Moon, C.J. Rawn, L.J. Love, A.J. Rondinone, J.R. Thompson, B.C. Chakoumakos, T.J. Phelps, J. Magn. Magn. Mater. 323, 3043 (2011)ADSCrossRefGoogle Scholar
- 75.R.M. Cornell, U. Schwertmann, in The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley, Hoboken, 2003)CrossRefGoogle Scholar