Applied Physics A

, 125:134 | Cite as

Carriers’ localization and thermal redistribution in InAlAs/InP grown by MOCVD on (311)A- and (311)B-InP substrates

  • Badreddine SmiriEmail author
  • Tarek Hidouri
  • Faouzi Saidi
  • Hassen Maaref


We present a photoluminescence (PL) study of the optical properties in In0.513Al0.487As/InP heterostructures grown on (311)A- and (311)B-InP substrates. The exciton localization effect is studied by considering the substrate polarity. An asymmetric PL line shape denoted P1 and P1′ associated with the type II transition, for the (311)B and (311)A substrate polarity, respectively, in the lower energies side has been found in both samples. Using PL technique, luminescence measurements were carried out as a function of temperature in the range of [10–300 K]. The PL peak energy, the PL intensity and the full width at half maximum (FWHM) display anomalous behaviors such as S-shaped and N-shaped. Implying the presence of localized carriers, they were ascribed to the energy potential modulation associated to the Indium cluster formation and piezoelectric (PZ) field. We investigate the presence of localized carriers by excitation density variation. With the assistance of localized-state ensemble (LSE) luminescence model, the PL spectra of the samples are quantitatively explained into the entire temperature range.



This work was supported by the Université de Monastir, Laboratoire de Micro-Opto électronique et Nanostructures (LMON), Faculté des Sciences, 5019, Monastir, Tunisia.


  1. 1.
    V.K. Dixit, S. Porwal, S.D. Singh, T.K. Sharma, S. Ghosh, S.M. Oak, J. Phys. D Appl. Phys. 47, 065103 (2014)CrossRefADSGoogle Scholar
  2. 2.
    Y.F. Wu, J.C. Lee, T.E. Nee, J.C. Wang, J. Lumin. 131, 1267–1271 (2011)CrossRefGoogle Scholar
  3. 3.
    F. Nakajima, S. Sanorpim, W. Ono, R. Katayana, K. Onabe, Phys. Stat. Sol.(A) 203, 1641 (2006)CrossRefADSGoogle Scholar
  4. 4.
    E. Laureto, I.F.L. Dias, J.L. Duarte, E. Di Mauro, H. Iwamoto, M.T.P. Freitas, S.A. Lourenc, D.O. Toginho Filho, J. Appl. Phys. 85, 8–15 (1999)CrossRefGoogle Scholar
  5. 5.
    T. Hidouri, F. Saidi, H. Maaref, P. Rodriguez, L. Auvray, Opt. Mater. 60, 487–494 (2016)CrossRefADSGoogle Scholar
  6. 6.
    M. Ezzedini, T. Hidouri, M.H.H. Alouane, A. Sayari, E. Shalaan, N. Chauvin, L. Sfaxi, F. Saidi, A. Al-Ghamdi, C. Bru-Chevallier, H. Maaref, Nanoscale Res. Lett. 12, 450 (2017)CrossRefADSGoogle Scholar
  7. 7.
    B. Smiri, I. Fraj, F. Saidi, R. Mghaïth, H. Maaref, J. Alloy. Compd. 736, 29–34 (2018)CrossRefGoogle Scholar
  8. 8.
    W. Liu, D.G. Zhao, D.S. Jiang, P. Chen, Z.S. Liu, J.J. Zhu, X. Li, F. Liang, J.P. Liu, S.M. Zhang, H. Yang, Y.T. Zhang, G.T. Du, J. Superlattices Microstruct. 88, 50–55 (2015)CrossRefADSGoogle Scholar
  9. 9.
    I. Fraj, T. Hidouri, F. Saidi, H. Maaref, Superlattices Microstruct. 102, 351–358 (2017)CrossRefADSGoogle Scholar
  10. 10.
    M.D. Teodoro, I.F.L. Dias, E. Laureto, J.L. Duarte, P.P. González-Borrero, S.A. Lourenço, I. Mazzaro, E. Marega Jr., G.J. Salamo, J. Appl. Phys. 103, 093508 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Q. Li, S.J. Xu, M.H. Xie, S.Y. Tong, J. Phys. Condens. Matter 17, 4853–4858 (2005)CrossRefADSGoogle Scholar
  12. 12.
    J. Hellara, K. Borgi, H. Maaref, V. Souliere, Y. Monteil, Mater. Sci. Eng. C 21, 231–236 (2002)CrossRefGoogle Scholar
  13. 13.
    D. Vignaud, X. Wallart, F. Mollot, B. Sermage, J. Appl. Phys. 84, 2138 (1998)CrossRefADSGoogle Scholar
  14. 14.
    P. Abraham, Y. Monteil, M. Sacilotti, T. Benyattou, M.A. Garcia, S. Moneger, A. Tabata, R. Landers, J. Morais, M. Pitaval, Appl. Surf. Sci 65–66, 777–783 (1993)CrossRefADSGoogle Scholar
  15. 15.
    T. Hidouri, R. Hamila, I. Fraj, F. Saidi, H. Maaref, P. Rodriguez, L. Auvray, Superlattices Microstruct. 103, 386–394 (2017)CrossRefADSGoogle Scholar
  16. 16.
    E. Abdoli, H. Haratizadeh, Phys. Status Solidi B 1, 170–175 (2010)CrossRefADSGoogle Scholar
  17. 17.
    Q. Li et al., Appl. Phys. Lett. 79, 1810–1812 (2001)CrossRefADSGoogle Scholar
  18. 18.
    Q. Li, S.J. Xu, M.H. Xie, S.Y. Tong, Euro Phys. Lett. 71, 994–1000 (2005)CrossRefADSGoogle Scholar
  19. 19.
    M. Bennour, L. Bouzaiene, F. Saidi, L. Sfaxi, H. Maaref, J. Lumin. 148, 207–213 (2014)CrossRefGoogle Scholar
  20. 20.
    P.G. Eliseev, P. Perlin, J.Y. Lee, M. Osinski, Appl. Phys. Lett. 71, 569 (1997)CrossRefADSGoogle Scholar
  21. 21.
    P.G. Eliseev, M. Osinski, J. Lee, T. Sugahara, S. Sakai, J. Electron. Mater. 29, 332–341 (2000)CrossRefADSGoogle Scholar
  22. 22.
    P.R. Berger, P.K. Bhattacharya, J. Singh, J. Appl. Phys. 61, 2856 (1987)CrossRefADSGoogle Scholar
  23. 23.
    J.P. Praseuth, L. Goldstein, P. Hénoc, J. Primot, G. Danan, J. Appl. Phys. 61, 215 (1987)CrossRefADSGoogle Scholar
  24. 24.
    E. Abdoli, H. Haratizadeh, Phys. Status Solidi B 247, 170–175 (2010)CrossRefADSGoogle Scholar
  25. 25.
    I. Fraj, F. Saidi, L. Bouzaiene, L. Sfaxi, H. Maaref, Superlattices Microstruct. 82, 406–414 (2015)CrossRefADSGoogle Scholar
  26. 26.
    F. Zeng, L. Zhu, W. Liu, X. Li, W. Liu, B.J. Chen, Y.C. Lee, Z.C. Feng, B. Liu, J. Alloy. Compd. 656, 881–886 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Tromson-Carli, G. Patriarche, R. Druilhe, A. Lusson, Y. Marfaing, R. Triboulet, P.D. Brown, A.W. Brinkman, J. Mater. Sci. Eng. B 16, 145–150 (1993)CrossRefGoogle Scholar
  28. 28.
    X. Li, W.I. Wang, IEEE Electron Device Lett. 14, 4 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Badreddine Smiri
    • 1
    Email author
  • Tarek Hidouri
    • 1
  • Faouzi Saidi
    • 1
  • Hassen Maaref
    • 1
  1. 1.Micro-Optoelectronic and Nanostructures Laboratory, Department of Physics, Faculty of Sciences MonastirUniversity of MonastirMonastirTunisia

Personalised recommendations