Ultrabroadband metamaterial absorbers based on ionic liquids
- 32 Downloads
Abstract
An ultrabroadband metamaterial absorber (MMAs) based on room temperature ionic liquids (ILs) and composed entirely of cations and anions was proposed and analyzed in the microwave regimen. The dielectric permittivity of the ILs [EMIm] [N(CN)2] was investigated from 0.5 to 50 GHz; the loss tangent tanδ of [EMIm] [N(CN)2] declines from 5.91 to 0.34, which implies a high dielectric loss of microwaves. To further improve the impedance matching over a wide band, the ILs [EMIm] [N(CN)2] were injected in a periodic photopolymer cylindrical array fabricated via 3D printing. We numerically and experimentally demonstrate that this absorber shows over 90% absorption at 9.26–49 GHz when the incident angle is 45° with a relative bandwidth as high as 134.6%. Versus water-based MMAs, the proposed absorber shows more than twice the absorption bandwidth. Mechanistic investigations show that the ultrabroadband absorption characteristics of the ILs-based MMAs mainly contribute to IL dispersion and electromagnetic resonance. Furthermore, the electromagnetic wave energy loss is mainly due to the high-dielectric loss of ILs [EMIm] [N(CN)2].
Notes
Acknowledgements
This research was supported by the National Key Research and Development Program of China (2017YFA0403101), the Natural Science Foundation of Gansu Province (17JR5RA119), and the Fundamental Research Funds for the Central Universities (lzujbky-2018-it62, lzujbky-2018-129).
References
- 1.D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)ADSCrossRefGoogle Scholar
- 2.N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)ADSCrossRefGoogle Scholar
- 3.D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D.R. Smith, Broadband electromagnetic cloaking with smart metamaterials. Nat. Commun. 3, 1213 (2012)ADSCrossRefGoogle Scholar
- 4.Y.M. Liu, X. Zhang, Metamaterials: a new frontier of science and technology. Soc. Rev. 40, 2494–2507 (2011)CrossRefGoogle Scholar
- 5.J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)ADSMathSciNetCrossRefGoogle Scholar
- 6.D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)ADSCrossRefGoogle Scholar
- 7.W. Li, J.G. Guan, Z.G. Sun, W. Wang, Q.J. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials. Opt. Express 17, 23410–23416 (2009)ADSCrossRefGoogle Scholar
- 8.N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
- 9.M.K. Hedayati, F. Faupel, M. Elbahri, Review of plasmonic nanocomposite metamaterial absorber. Materials 7, 1221–1248 (2014)ADSCrossRefGoogle Scholar
- 10.Y.X. Cui, Y.G. He, Y. Jin, F. Ding, L. Yang, Y.Q. Ye, S.M. Zhong, Y.Y. Lin, S.L. He, Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 8, 495–520 (2014)ADSCrossRefGoogle Scholar
- 11.Q. Chen, S.W. Bie, W. Yuan, Y.S. Xu, H.B. Xu, J.J. Jiang, Low frequency absorption properties of a thin metamaterial absorber with cross-array on the surface of a magnetic substrate. J. Phys. D. Appl. Phys. 49, 425102 (2016)ADSCrossRefGoogle Scholar
- 12.X. Wang, B.Z. Zhang, W.J. Wang, J. Wang, J.P. Duan, Design, fabrication, and characterization of a flexible dual-band metamaterial absorber. IEEE Photonics J. 9, 4600213 (2017)Google Scholar
- 13.B. Casse, W.T. Lu, Y.J. Huang, L. Menon, S. Sridhar, Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 96, 023114 (2010)ADSCrossRefGoogle Scholar
- 14.C.B. Ma, Z.W. Liu, A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett. 96, 183103 (2010)ADSCrossRefGoogle Scholar
- 15.C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.H. Chen, H.C. Wang, T.Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 10, 986–994 (2016)ADSCrossRefGoogle Scholar
- 16.W.L. Guo, G.M. Wang, T.J. Li, H.P. Li, Y.Q. Zhuang, H.S. Hou, Ultra-thin anisotropic metasurface for polarized beam splitting and reflected beam steering applications. J. Phys. D Appl. Phys. 49, 425305 (2016)ADSCrossRefGoogle Scholar
- 17.Y. Wang, T.Y. Sun, T. Paudel, Y. Zhang, Z.F. Ren, K. Kempa, Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett. 12, 440–445 (2011)ADSCrossRefGoogle Scholar
- 18.M.A. Green, S. Pillai, Harnessing plasmonics for solar cells. Nat. Photonics 6, 130–132 (2012)ADSCrossRefGoogle Scholar
- 19.X.L. Liu, T. Starr, A.F. Starr, W.J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010)ADSCrossRefGoogle Scholar
- 20.C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014)ADSCrossRefGoogle Scholar
- 21.N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010)ADSCrossRefGoogle Scholar
- 22.F.N. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)ADSCrossRefGoogle Scholar
- 23.J.L. Percheca, Y. Desieres, N. Rochat, R. Espiau de, Lamaestre, Subwavelength optical absorber with an integrated photon sorter. Appl. Phys. Lett. 100, 113305 (2012)ADSCrossRefGoogle Scholar
- 24.J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, H. Jang, E.H. Choi, L. Chen, Y.P. Lee, Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21, 9691 (2013)ADSCrossRefGoogle Scholar
- 25.D.T. Viet, N.T. Hien, P.V. Tuong, N.Q. Minh, P.T. Trang, L.N. Le, Y.P. Lee, V.D. Lam, Perfect absorber metamaterials: peak, multi-peak and broadband absorption. Opt. Commun. 322, 209–213 (2014)ADSCrossRefGoogle Scholar
- 26.S. Ghosh, S. Bhattacharyya, K. Srivastava, in Design of a Bandwidth-Enhanced Ultra Thin Metamaterial Absorber. Progress in Electromagnetics Research Symposium Proceedings, pp. 1097–1111 (2013)Google Scholar
- 27.J. Grant, Y. Ma, S. Saha, A. Khalid, D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 3476–3478(2011)ADSCrossRefGoogle Scholar
- 28.F. Ding, Y.X. Cui, X.C. Ge, F. Zhang, Y. Jin, S.L. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012)ADSCrossRefGoogle Scholar
- 29.S.B. Ghosh, D. Chaurasiya, K.V. Srivastava, Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys. A. 118, 207–215 (2015)ADSCrossRefGoogle Scholar
- 30.H.K. Kim, D.J. Lee, S. Lim, Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator. Appl. Opt. 55, 4113–4118 (2016)ADSCrossRefGoogle Scholar
- 31.J.B. Sun, L.Y. Liu, G.Y. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19, 21155–21162 (2011)ADSCrossRefGoogle Scholar
- 32.J. Zhang, G. Wang, B. Zhang, T. He, Y. He, J.L. Shen, Photo-excited broadband tunable terahertz metamaterial absorber. Opt. Mater. 54, 32–36 (2016)ADSCrossRefGoogle Scholar
- 33.Y.J. Yoo, S. Ju, S.Y. Park, Y.J. Kim, J. Bong, T. Lim, K.W. Kim, J.Y. Rhee, Y. Lee, Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep. 5, 14018 (2015)ADSCrossRefGoogle Scholar
- 34.J.W. Xie, W.R. Zhu, I.D. Rukhlenko, F.J. Xiao, C. He, J.P. Geng, X.L. Liang, R.H. Jin, M. Premaratne, Water metamaterial for ultra-broadband and wide-angle absorption. Opt. Express 26, 5052–5059 (2018)ADSCrossRefGoogle Scholar
- 35.Y.Q. Pang, J.F. Wang, Q. Cheng, S. Xia, X.Y. Zhou, Z. Xu, T.J. Cui, S.B. Qu, Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett. 110, 104103 (2017)ADSCrossRefGoogle Scholar
- 36.A. Andryieuski, S.M. Kuznetsova, S.V. Zhukovsky, Y.S. Kivshar, A.V. Lavrinenko, Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep. 5, 13535 (2015)ADSCrossRefGoogle Scholar
- 37.X.J. Huang, H.L. Yang, Z.Y. Shen, J. Chen, H.L. Lin, Z.T. Yu, Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J. Phys. D Appl. Phys. 50, 385304 (2017)CrossRefGoogle Scholar
- 38.Q.H. Song, W. Zhang, P.C. Wu, W. Zhu, Z.X. Shen, P.H.J. Chong, Q.X. Liang, Z.C. Yang, Y.L. Hao, H. Cai, H.F. Zhou, Y. Gu, G.Q. Lo, D.P.Tsai, T. Bourouina, Y. Leprince-Wang, A.Q. Liu, Water-resonator-based metasurface: an ultrabroadband and near-unity absorption. Adv. Opt. Mater. 5, 1601103 (2017)CrossRefGoogle Scholar
- 39.N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)CrossRefGoogle Scholar
- 40.M.J. Shiddiky, A.A. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosens. Bioelectron. 26, 1775–1787 (2011)CrossRefGoogle Scholar
- 41.B. Leidy, M. Agudelo, M.J. Padró, R. Mario, Analysis of non-polar heterocyclic aromatic amines in beefburguers by using microwave-assisted extraction and dispersive liquid–ionic liquid microextraction. Food Chem. 141, 1694–1701 (2013)CrossRefGoogle Scholar
- 42.J.H. Gong, F.L. Yang, Q.F. Shao, X.D. He, X.P. Zhang, S.M. Liu, L.Y. Tang, Y.Q. Deng, Microwave absorption performance of methylimidazolium ionic liquids: towards novel ultra-wideband metamaterial absorbers. RSC. Adv. 7, 41980–41988 (2017)CrossRefGoogle Scholar
- 43.D. Micheli, C. Apollo, R. Pastore, M. Marchetti, X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos. Sci. Technol. 70, 400–409 (2010)CrossRefGoogle Scholar
- 44.S. Lee, J. Kang, C. Kim, Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos. Struct. 76, 397–405 (2006)CrossRefGoogle Scholar
- 45.J.G. Huddleston, A.E. Visser, W.M. Reichert, H. D.Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)CrossRefGoogle Scholar
- 46.A. Stoppa, J. Hunger, A. Thoman, H. Helm, G. Hefter, Buchner, Interactions and dynamics in ionic liquids. R. J. Phys. Chem. B 112, 4854–4858 (2008)CrossRefGoogle Scholar
- 47.F. Yu, J. Wang, J.F. Wang, H. Ma, H.L. Du, Z. Xu, S.B. Qu, Reflective frequency selective surface based on low-permittivity dielectric metamaterials. Appl. Phys. Lett. 107, 211906 (2015)ADSCrossRefGoogle Scholar