Applied Physics A

, 125:149 | Cite as

Ultrabroadband metamaterial absorbers based on ionic liquids

  • Fulong Yang
  • Jianhao Gong
  • E. Yang
  • Yongji Guan
  • Xiaodong He
  • Shimin Liu
  • Xiaoping ZhangEmail author
  • Youquan DengEmail author


An ultrabroadband metamaterial absorber (MMAs) based on room temperature ionic liquids (ILs) and composed entirely of cations and anions was proposed and analyzed in the microwave regimen. The dielectric permittivity of the ILs [EMIm] [N(CN)2] was investigated from 0.5 to 50 GHz; the loss tangent tanδ of [EMIm] [N(CN)2] declines from 5.91 to 0.34, which implies a high dielectric loss of microwaves. To further improve the impedance matching over a wide band, the ILs [EMIm] [N(CN)2] were injected in a periodic photopolymer cylindrical array fabricated via 3D printing. We numerically and experimentally demonstrate that this absorber shows over 90% absorption at 9.26–49 GHz when the incident angle is 45° with a relative bandwidth as high as 134.6%. Versus water-based MMAs, the proposed absorber shows more than twice the absorption bandwidth. Mechanistic investigations show that the ultrabroadband absorption characteristics of the ILs-based MMAs mainly contribute to IL dispersion and electromagnetic resonance. Furthermore, the electromagnetic wave energy loss is mainly due to the high-dielectric loss of ILs [EMIm] [N(CN)2].



This research was supported by the National Key Research and Development Program of China (2017YFA0403101), the Natural Science Foundation of Gansu Province (17JR5RA119), and the Fundamental Research Funds for the Central Universities (lzujbky-2018-it62, lzujbky-2018-129).


  1. 1.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D.R. Smith, Broadband electromagnetic cloaking with smart metamaterials. Nat. Commun. 3, 1213 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Y.M. Liu, X. Zhang, Metamaterials: a new frontier of science and technology. Soc. Rev. 40, 2494–2507 (2011)CrossRefGoogle Scholar
  5. 5.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    W. Li, J.G. Guan, Z.G. Sun, W. Wang, Q.J. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials. Opt. Express 17, 23410–23416 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M.K. Hedayati, F. Faupel, M. Elbahri, Review of plasmonic nanocomposite metamaterial absorber. Materials 7, 1221–1248 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Y.X. Cui, Y.G. He, Y. Jin, F. Ding, L. Yang, Y.Q. Ye, S.M. Zhong, Y.Y. Lin, S.L. He, Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 8, 495–520 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Q. Chen, S.W. Bie, W. Yuan, Y.S. Xu, H.B. Xu, J.J. Jiang, Low frequency absorption properties of a thin metamaterial absorber with cross-array on the surface of a magnetic substrate. J. Phys. D. Appl. Phys. 49, 425102 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    X. Wang, B.Z. Zhang, W.J. Wang, J. Wang, J.P. Duan, Design, fabrication, and characterization of a flexible dual-band metamaterial absorber. IEEE Photonics J. 9, 4600213 (2017)Google Scholar
  13. 13.
    B. Casse, W.T. Lu, Y.J. Huang, L. Menon, S. Sridhar, Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 96, 023114 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    C.B. Ma, Z.W. Liu, A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett. 96, 183103 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.H. Chen, H.C. Wang, T.Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 10, 986–994 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    W.L. Guo, G.M. Wang, T.J. Li, H.P. Li, Y.Q. Zhuang, H.S. Hou, Ultra-thin anisotropic metasurface for polarized beam splitting and reflected beam steering applications. J. Phys. D Appl. Phys. 49, 425305 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Wang, T.Y. Sun, T. Paudel, Y. Zhang, Z.F. Ren, K. Kempa, Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett. 12, 440–445 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Green, S. Pillai, Harnessing plasmonics for solar cells. Nat. Photonics 6, 130–132 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    X.L. Liu, T. Starr, A.F. Starr, W.J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    F.N. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    J.L. Percheca, Y. Desieres, N. Rochat, R. Espiau de, Lamaestre, Subwavelength optical absorber with an integrated photon sorter. Appl. Phys. Lett. 100, 113305 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, H. Jang, E.H. Choi, L. Chen, Y.P. Lee, Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21, 9691 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    D.T. Viet, N.T. Hien, P.V. Tuong, N.Q. Minh, P.T. Trang, L.N. Le, Y.P. Lee, V.D. Lam, Perfect absorber metamaterials: peak, multi-peak and broadband absorption. Opt. Commun. 322, 209–213 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S. Ghosh, S. Bhattacharyya, K. Srivastava, in Design of a Bandwidth-Enhanced Ultra Thin Metamaterial Absorber. Progress in Electromagnetics Research Symposium Proceedings, pp. 1097–1111 (2013)Google Scholar
  27. 27.
    J. Grant, Y. Ma, S. Saha, A. Khalid, D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 3476–3478(2011)ADSCrossRefGoogle Scholar
  28. 28.
    F. Ding, Y.X. Cui, X.C. Ge, F. Zhang, Y. Jin, S.L. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    S.B. Ghosh, D. Chaurasiya, K.V. Srivastava, Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys. A. 118, 207–215 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    H.K. Kim, D.J. Lee, S. Lim, Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator. Appl. Opt. 55, 4113–4118 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    J.B. Sun, L.Y. Liu, G.Y. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19, 21155–21162 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    J. Zhang, G. Wang, B. Zhang, T. He, Y. He, J.L. Shen, Photo-excited broadband tunable terahertz metamaterial absorber. Opt. Mater. 54, 32–36 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Y.J. Yoo, S. Ju, S.Y. Park, Y.J. Kim, J. Bong, T. Lim, K.W. Kim, J.Y. Rhee, Y. Lee, Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep. 5, 14018 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Xie, W.R. Zhu, I.D. Rukhlenko, F.J. Xiao, C. He, J.P. Geng, X.L. Liang, R.H. Jin, M. Premaratne, Water metamaterial for ultra-broadband and wide-angle absorption. Opt. Express 26, 5052–5059 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    Y.Q. Pang, J.F. Wang, Q. Cheng, S. Xia, X.Y. Zhou, Z. Xu, T.J. Cui, S.B. Qu, Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett. 110, 104103 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    A. Andryieuski, S.M. Kuznetsova, S.V. Zhukovsky, Y.S. Kivshar, A.V. Lavrinenko, Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep. 5, 13535 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    X.J. Huang, H.L. Yang, Z.Y. Shen, J. Chen, H.L. Lin, Z.T. Yu, Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J. Phys. D Appl. Phys. 50, 385304 (2017)CrossRefGoogle Scholar
  38. 38.
    Q.H. Song, W. Zhang, P.C. Wu, W. Zhu, Z.X. Shen, P.H.J. Chong, Q.X. Liang, Z.C. Yang, Y.L. Hao, H. Cai, H.F. Zhou, Y. Gu, G.Q. Lo, D.P.Tsai, T. Bourouina, Y. Leprince-Wang, A.Q. Liu, Water-resonator-based metasurface: an ultrabroadband and near-unity absorption. Adv. Opt. Mater. 5, 1601103 (2017)CrossRefGoogle Scholar
  39. 39.
    N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)CrossRefGoogle Scholar
  40. 40.
    M.J. Shiddiky, A.A. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosens. Bioelectron. 26, 1775–1787 (2011)CrossRefGoogle Scholar
  41. 41.
    B. Leidy, M. Agudelo, M.J. Padró, R. Mario, Analysis of non-polar heterocyclic aromatic amines in beefburguers by using microwave-assisted extraction and dispersive liquid–ionic liquid microextraction. Food Chem. 141, 1694–1701 (2013)CrossRefGoogle Scholar
  42. 42.
    J.H. Gong, F.L. Yang, Q.F. Shao, X.D. He, X.P. Zhang, S.M. Liu, L.Y. Tang, Y.Q. Deng, Microwave absorption performance of methylimidazolium ionic liquids: towards novel ultra-wideband metamaterial absorbers. RSC. Adv. 7, 41980–41988 (2017)CrossRefGoogle Scholar
  43. 43.
    D. Micheli, C. Apollo, R. Pastore, M. Marchetti, X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos. Sci. Technol. 70, 400–409 (2010)CrossRefGoogle Scholar
  44. 44.
    S. Lee, J. Kang, C. Kim, Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos. Struct. 76, 397–405 (2006)CrossRefGoogle Scholar
  45. 45.
    J.G. Huddleston, A.E. Visser, W.M. Reichert, H. D.Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)CrossRefGoogle Scholar
  46. 46.
    A. Stoppa, J. Hunger, A. Thoman, H. Helm, G. Hefter, Buchner, Interactions and dynamics in ionic liquids. R. J. Phys. Chem. B 112, 4854–4858 (2008)CrossRefGoogle Scholar
  47. 47.
    F. Yu, J. Wang, J.F. Wang, H. Ma, H.L. Du, Z. Xu, S.B. Qu, Reflective frequency selective surface based on low-permittivity dielectric metamaterials. Appl. Phys. Lett. 107, 211906 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Science and EngineeringLanzhou UniversityLanzhouChina
  2. 2.Key Laboratory of Gansu Advanced Control for Industrial Processes, College of Electrical and Information Engineering, National Experimental Teaching Center of Electrical and Control EngineeringLanzhou University of TechnologyLanzhouChina
  3. 3.Centre for Green Chemistry and CatalysisLanzhou Institute of Chemical Physics, CASLanzhouChina

Personalised recommendations