Advertisement

Applied Physics A

, 125:174 | Cite as

Enhancement of resonance frequency of stripe domain soft magnetic film by oblique sputtering

  • Cai Zhou
  • Menghan You
  • Lei Ding
  • Cunfang Feng
  • Mingyao XuEmail author
  • Shengxiang WangEmail author
Article
  • 7 Downloads

Abstract

We investigate the static and dynamic magnetic property of stripe domain soft magnetic film by oblique sputtering at room temperature. With increasing oblique angles, the change of saturate magnetic field and remanent magnetization can be obtained by the typical hysteresis loop with domain structure. From MFM images, the clear stripe domain structure was observed and the stripe domain width decrease with increasing oblique sputtering angles. The result indicated increase of perpendicular magnetic anisotropy, which can be obtained by out-of-plane measurement configure of ferromagnetic resonance. The behavior is originated from the exchange coupling between ferrimagnet and ferromagnet, which lead to the enhancement of resonance frequency from 2.1 to 2.6 GHz. It was promising for future magnetic memory devices.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51302196), Key Projects of Educational Commission of Hubei Province Department of Education (Grant No. D20161604), Foundation of Wuhan Textile University (Grant No. 183005).

References

  1. 1.
    S.X. Wang, N.X. Sun, M. Yamaguchi, S. Yabukami, Nature 407, 150 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    K. Ikeda, K. Kobayashi, M. Fujimoto, J. Appl. Phys. 92, 5395 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    E.C. Park, Y.S. Choi, J.B. Yoon, S. Hong, E. Yoon, IEEE Trans. Microw Theory Tech. 51, 289 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    S.D. Li, Z.R. Yuan, J.G. Duh, J. Phys. D Appl. Phys. 41, 055004 (2008) (6 pp) ADSCrossRefGoogle Scholar
  5. 5.
    S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, A. Shakin, J. Magn. Magn. Mater. 398, 49–53 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, J. Magn. Magn. Mater. 443, 142–148 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    C. Zhou, F.L. Wang, W.W. Wei, G.X. Wang, C.J. Jiang, D.S. Xue, J. Phys. D Appl. Phys. 46, 425002 (2013) (5 pp) CrossRefGoogle Scholar
  8. 8.
    C. Zhou, C.J. Jiang, Z. Zhao, J. Phys. D Appl. Phys. 48, 265001 (2015) (7 pp) ADSCrossRefGoogle Scholar
  9. 9.
    G.X. Wang, C.H. Dong, W.X. Wang, Z.L. Wang, D.S. Xue, J. Appl. Phys. 112, 093907 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    G.X. Wang, C.H. Dong, T. Wang, G.Z. Chai, C.J. Jiang, D.S. Xue, J. Alloy. Compd. 573, 118–121 (2013)CrossRefGoogle Scholar
  11. 11.
    G.Z. Chai, N.N. Phuoc, C.K. Ong, Sci. Rep. 2, 832 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    H.G. Ma, C.Y. Li, W.F. Wang, G.Z. Chai, J. Phys. D Appl. Phys. 51, 285004 (2018)CrossRefGoogle Scholar
  13. 13.
    R.J. Prosen, O.J. Holmen, B.E. Gran, J. Appl. Phys. 32, S91 (1961)ADSCrossRefGoogle Scholar
  14. 14.
    D.S. Xue, F.S. Li, X.L. Fan, F.S. Wen, Chin. Phys. Lett. 25, 4120 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    N.D. Ha, T.S. Yoon, H.B. Kim, J.J. Lim, C.G. Kim, C.O. Kim, J. Magn. Magn. Mater. 290, 1571–1575 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Munakata, M. Motoyama, M. Yagi, T. Ito, Y. Shimada, M. Yamaguchi, K.I. Arai, IEEE Trans. Magn. 38, 3147 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    S. Jin, W. Zhu, R.B. Dover, T.H. Tiefel, V. Korenivski, L.H. Chen, Appl. Phys. Lett. 70, 3161 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    I. Kim, J. Kim, K.H. Kim, M. Yamaguchi, IEEE Trans. Magn. 40, 2706 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 457, 83–96 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 393–405 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    D.S. Xue, X.L. Fan, C.J. Jiang, Appl. Phys. Lett. 89, 011910 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    C.J. Jiang, D.S. Xue, D.W. Guo, X.L. Fan, J. Appl. Phys. 106, 103910 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    N.N. Phuoc, C.K. Ong, Adv. Mater. 25, 980–984 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Zhou, W.W. Wei, C.J. Jiang, Appl. Phys. A. 121, 39–44 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Z.K. Wang, E.X. Feng, Q.F. Liu, J.B. Wang, D.S. Xue. Phys. B 407, 3872–3875 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    D.I. Tishkevich, S.S. Grabchikov, L.S. Tsybulskaya, V.S. Shendyukov, S.S. Perevoznikov, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D.A. Vinnik, J. Alloy. Compd. 735, 1943–1948 (2018)CrossRefGoogle Scholar
  27. 27.
    D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, J. Alloy. Compd. 749, 1036–1042 (2018)CrossRefGoogle Scholar
  28. 28.
    C.C. Yang, C. Zhang, F.L. Wang, Z. Zhao, C.J. Jiang, D.S. Xue, Appl. Phys. A. 120, 1159–1163 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, L.V. Panina, S.V. Trukhanov, A.V. Trukhanov, J. Alloy. Compd. 748, 970–978 (2018)CrossRefGoogle Scholar
  30. 30.
    T.I. Zubar, L.V. Panina, N.N. Kovaleva, S.A. Sharko, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, S.V. Trukhanov, A.V. Trukhanov, Cryst. Eng. Commun. 20, 2306–2315 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Chikazumi, Physics of ferromagnetism (Oxford University Press, Oxford, 1997), p. 450Google Scholar
  32. 32.
    M. Kisielewski, A. Maziewski, T. Polvakova, V. Zablotskii, Phys. Rev. B 69, 184419 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    M. Farle, Rep. Prog. Phys. 61, 755 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    M.D. De Sihues, C.A. Durante-Rincón, J.R. Fermin, J. Magn. Magn. Mater. 316, e462 (2007)CrossRefGoogle Scholar
  35. 35.
    Y.J. Chen, A. Yang, M.R. Paudel, S. Stadler, C. Vittoria, V.G. Harris, Phys. Rev. B 83, 104406 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 093909 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Chin. Phys. B 25, 016102 (2016)CrossRefGoogle Scholar
  38. 38.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, An.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, J. Magn. Magn. Mater. 442, 300–310 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, An.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, Dalton Trans. 46, 9010–9021 (2017)CrossRefGoogle Scholar
  40. 40.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, An.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko,, D.A. Vinnik, D.V. Karpinsky, L.Y. Matzui, J. Phys. Chem. Sol. 111, 142–152 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, J. Low Temp. Phys. 149, 185–199 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, JETP 111, 209–214 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Province Engineering Research Center for Intelligent Micro-nano Medical Equipment and Key Technologie, School of electrical and electronics engineeringWuhan Textile UniversityWuhanChina
  2. 2.State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of electrical and electronics engineeringWuhan Textile UniversityWuhanChina

Personalised recommendations