Applied Physics A

, 125:143 | Cite as

Structural, optical and electrical characterizations of Ln6WO12 (Ln=La, Nd, Sm, Gd) nanoceramics

  • N. L. Jayalekshmy
  • Annamma John
  • Jijimon K. Thomas
  • Sam SolomonEmail author


Nanoparticles of Ln6WO12 (Ln=La, Nd, Sm, Gd) abbreviated as LWO, NWO, SWO, and GWO are synthesised by combustion method. The synthesised materials are annealed at 900 °C and then subjected to different characterization techniques. XRD studies show that LWO crystallizes in cubic structure and NWO, SWO, and GWO crystallize in tetragonal structure. The size and nature of the nanoparticles are characterized through the TEM analysis. The Raman and FTIR studies conducted on the samples support the structural data obtained from the XRD data. The UV–visible absorbance is recorded and optical bandgap is calculated using the Tauc’s equation. The photoluminescence spectra of samples show that intense emission in green, blue, orange, and red regions and transitions responsible for the emissions are identified. Bulk ceramic pellets of LWO, NWO, SWO, and GWO prepared from their nanopowders are sintered and impedance studies are carried. The surface morphology of the sintered pellets of LWO, NWO, SWO, and GWO is studied by scanning electron microscopy. The frequency and temperature-dependent dielectric studies of prepared pellets are also carried out.



The authors acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala for financial assistance (Grant no. 007/SRSPS/2011/CSTE).


  1. 1.
    E. Aleshin, R. Roy, J. Am. Ceram. Soc. 45, 18 (1962)CrossRefGoogle Scholar
  2. 2.
    Z.D. Apostolov, P. Sarin, R.P. Haggerty, W.M. Kriven, J. Am. Ceram. Soc. 96, 987 (2013)CrossRefGoogle Scholar
  3. 3.
    N. Imanaka, Y. Kobayashi, K. Fujiwara, T. Asano, Y. Okazaki, G. Adachi, Chem. Mater. 10, 2006 (1998)CrossRefGoogle Scholar
  4. 4.
    K. Kuribayashi, T. Sata, Bull. Chem. Soc. Jpn 50, 2932 (1977)CrossRefGoogle Scholar
  5. 5.
    P.M. Forster, A. Yokochi, A.W. Sleight, J. Solid State Chem. 140, 157 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Science (80-.). 272, 90 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    L.L.Y. Chang, J. Inorg. Nucl. Chem. 31, 2003 (1969)CrossRefGoogle Scholar
  8. 8.
    T. Shimura, S. Fujimoto, H. Iwahara, Solid State Ion. 143, 117 (2001)CrossRefGoogle Scholar
  9. 9.
    Z. Li, C. Kjølseth, R. Haugsrud, J. Membr. Sci. 476, 105 (2015)CrossRefGoogle Scholar
  10. 10.
    R. Haugsrud, C. Kjølseth, J. Phys. Chem. Solids 69, 1758 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    C. Solís, S. Escolastico, R. Haugsrud, J.M. Serra, J. Phys. Chem. C 115, 11124 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Haugsrud, H. Fjeld, K.R. Haug, T. Norby, J. Electrochem. Soc. 154, B77 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Amsif, A. Magrasó, D. Marrero-López, J.C. Ruiz-Morales, J. Canales-Vázquez, P. Núñez, Chem. Mater. 24, 3868 (2012)CrossRefGoogle Scholar
  14. 14.
    A.V. Shlyakhtina, S.N. Savvin, N.V. Lyskov, D.A. Belov, A.N. Shchegolikhin, I.V. Kolbanev, O.K. Karyagina, S.A. Chernyak, L.G. Shcherbakova, P. Núñez, Solid State Ion. 302, 143 (2017)CrossRefGoogle Scholar
  15. 15.
    N. Diot, P. Bénard-Rocherullé, R. Marchand, Powder Diffr. 15, 220 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    A. Magrasó, C. Frontera, D. Marrero-López, P. Núñez, Dalton Trans. 46, 10273 (2009)CrossRefGoogle Scholar
  17. 17.
    S.F. Bartram, Inorg. Chem. 5, 749 (1966)CrossRefGoogle Scholar
  18. 18.
    S.P. Ray, D.E. Cox, J. Solid State Chem. 15, 333 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    L.L.Y. Chang, B. Phillips, Inorg. Chem. 3, 1792 (1964)CrossRefGoogle Scholar
  20. 20.
    S. Escolástico, V.B. Vert, J.M. Serra, Chem. Mater. 21, 3079 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Tian, B. Chen, R. Hua, H. Zhong, L. Cheng, J. Sun, W. Lu, J. Wan, Phys. B Phys. Condens. Matter 404, 3598 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    E. Quarez, K.V. Kravchyk, O. Joubert, Solid State Ion. 216, 19 (2012)CrossRefGoogle Scholar
  23. 23.
    A.K. Tyagi, BARC Newsl. 285, 39 (2007)Google Scholar
  24. 24.
    R. Haugsrud, Solid State Ion. 178, 555 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Escolastico, J. Seeger, S. Roitsch, M. Ivanova, W.A. Meulenberg, J.M. Serra, ChemSusChem 6, 1523 (2013)CrossRefGoogle Scholar
  26. 26.
    W.G. Fateley, N.T. Mcdecitt, F.F. Bentley, Appl. Spectrosc. 25, 155 (1971)ADSCrossRefGoogle Scholar
  27. 27.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A, Theory and Applications in Inorganic Chemistry (Wiley, Hoboken, 2009)Google Scholar
  28. 28.
    D. Michel, M.P. y Jorba, R. Collongues, J. Raman Spectrosc. 5, 163 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    T. Scherb, S.A.J. Kimber, C. Stephan, P.F. Henry, G. Schumacher, S. Escolastico, et al., J. Appl. Crystallogr. 49, 997 (2016)CrossRefGoogle Scholar
  30. 30.
    S.D. Sidney, D. Ross, Inorganic Infrared and Raman Spectra (McGraw-Hill, New York, 1972)Google Scholar
  31. 31.
    A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Langmuir 14, 5011 (1998)CrossRefGoogle Scholar
  32. 32.
    Q. Xiao, Q. Zhou, M. Li, J. Lumin. 130, 1092 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Chahar, V.B. Taxak, M. Dalal, S. Singh, S.P. Khatkar, Mater. Res. Bull. 77, 91 (2016)CrossRefGoogle Scholar
  34. 34.
    G. Annadurai, S.M.M. Kennedy, V. Sivakumar, J. Rare Earths 34, 576 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Li, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, H.S. Lee, S.S. Yi, Inorg. Chem. 50, 12522 (2011)CrossRefGoogle Scholar
  36. 36.
    B. Umesh, B. Eraiah, H. Nagabhushana, B.M. Nagabhushana, G. Nagaraja, C. Shivakumara, R.P.S. Chakradhar, J. Alloys Compd. 509, 1146 (2011)CrossRefGoogle Scholar
  37. 37.
    M.M. Antoinette, S. Israel, G. Sathya, A.J. Amali, J.L. Berchmans, K. Sujatha, C. Anzline, R.N. Devi, J. Rare Earths 35, 1102 (2017)CrossRefGoogle Scholar
  38. 38.
    A. Kale, N. Shepherd, W. Glass, D. DeVito, M. Davidson, P.H. Holloway, J. Appl. Phys. 94, 3147 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    X. Wang, Y. lun Xian, G. Wang, J. xin Shi, Q. Su, M. Gong, Opt. Mater. (Amst). 30, 521 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    S. Neeraj, N. Kijima, A.K. Cheetham, Solid State Commun. 131, 65 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    V.M. Longo, L.S. Cavalcante, R. Erlo, V.R. Mastelaro, A.T. de Figueiredo, J.R. Sambrano, S. de Lázaro, A.Z. Freitas, L. Gomes, N.D. Vieira, J.A. Varela, E. Longo, Acta Mater. 56, 2191 (2008)CrossRefGoogle Scholar
  42. 42.
    S. Suresh, J. Cryst. Process Technol. 03, 87 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. L. Jayalekshmy
    • 1
  • Annamma John
    • 1
  • Jijimon K. Thomas
    • 1
  • Sam Solomon
    • 1
    Email author
  1. 1.Department of PhysicsMar Ivanios CollegeThiruvananthapuramIndia

Personalised recommendations