Advertisement

Applied Physics A

, 125:138 | Cite as

Biomimetic fabrication and photoelectric properties of superhydrophobic ZnO nanostructures on flexible PDMS substrates replicated from rose petal

  • Shuxi DaiEmail author
  • Yihong Zhu
  • Yuzong Gu
  • Zuliang Du
Article
  • 31 Downloads

Abstract

Three-dimensional hierarchical ZnO nanostructures have been fabricated on flexible hierarchical PDMS substrates via a combination of facile PDMS casting process and solution growth routine. Fresh rose petal was used as template for the preparation of positive and negative hierarchical PDMS substrates. Morphologies, dimensions and orientation of ZnO nanostructures grown on rose-petal-like flexible PDMS surface can be controlled by adjusting the hydrothermal reaction parameters. ZnO nanostructures grown on the hierarchical PDMS substrate were found to highly influence the surface wetting behavior. Furthermore, the photoelectrical characterizations demonstrate that the flexible device based on superhydrophobic ZnO/PDMS films showed a high sensitivity of UV light and presented potential applications in optoelectronic applications.

Notes

Acknowledgements

This work was supported by the funds from National Natural Science Foundation of China (20903034), Natural Science Foundation of Henan Province (162300410024), the Young Key Teacher Foundation (2015GGJS-023) and Key Scientific Research Project (15A140004) of Education Department of Henan Province.

References

  1. 1.
    G. Wen, Z. Guo, W. Liu, Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale 9, 3338–3366 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Mouterde, G. Lehoucq, S. Xavier, A. Checco, C. Black, A. Rahman, T. Midavaine, Clanet C,QuereD: antifogging abilities of model nanotextures. Nat. Mater. 16, 658–664 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    S. Wang, K. Liu, X. Yao, L. Jiang:, and Application, Bioinspired surfaces with superwettability: new insight on theory, design. Chem. Rev. 115, 8230–8293 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Guo, Y. Yu, J. Zeng, X. Liu, X. Zhou, L. Niu, T. Gao, K. Li, Y. Yang, F. Zhou. Z. Zheng, Biomimicking topographic elastomeric petals (e-petals) for omnidirectional stretchable and printable electronics. Adv. Sci. 2, 1400021 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir. 24, 4114–4119 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Xi, L. Jiang, Biomimic superhydrophobic surface with high adhesive forces. Ind. Eng. Chem. Res. 47, 6354–6357 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Feng, Y. Zhang, M. Li, Y. Zheng, W. Shen, L. Jiang, The structural color of red rose petals and their duplicates. Langmuir. 26, 14885–14888 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Koch, B. Bhushan, W. Barthlott, Multifunctional surface structures of plants: an inspiration for biomimetics. Prog. Mater. Sci. 54, 137–178 (2009)CrossRefGoogle Scholar
  9. 9.
    B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir. 26, 8207–8217 (2010)CrossRefGoogle Scholar
  10. 10.
    B. Bhushan, Bioinspired structured surfaces. Langmuir. 28, 1698–1714 (2012)CrossRefGoogle Scholar
  11. 11.
    W.G. Bae, H.N. Kim, D. Kim, S.H. Park, H.E. Jeong, K.Y. Suh, 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv. Mater. 26, 675–700 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Liu, C. Zong, K. Ai, W. He, L. Lu, Engineering natural materials as surface-enhanced Raman spectroscopy substrates for in situ molecular sensing. ACS Appl. Mater. Interfaces. 4, 6599–6608 (2012)CrossRefGoogle Scholar
  13. 13.
    B.-B. Xu, Y.-L. Zhang, W.-Y. Zhang, X.-Q. Liu, J.-N. Wang, X.-L. Zhang, D.-D. Zhang, H.-B. Jiang, R. Zhang, H.-B. Sun, Silver-coated rose petal: green, facile, low-cost and sustainable fabrication of a SERS substrate with unique superhydrophobicity and high efficiency. Advanced Opt. Mater. 1, 56–60 (2013)CrossRefGoogle Scholar
  14. 14.
    J.B. Law, A.M. Ng, A.Y. He, H.Y. Low, Bioinspired ultrahigh water pinning nanostructures. Langmuir. 30, 325–331 (2014)CrossRefGoogle Scholar
  15. 15.
    Z. Yuan, J. Xiao, J. Zeng, C. Wang, J. Liu, S. Xing, D. Jiang, G. Du, F. Yang, C. Peng et al., Facile method to prepare a novel honeycomb-like superhydrophobic polydimethylsiloxan surface. Surf. Coat. Technol. 205, 1947–1952 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Karaman, N. Çabuk, D. Özyurt, Ö Köysüren, Self-supporting superhydrophobic thin polymer sheets that mimic the nature’s petal effect. Appl. Surf. Sci. 259, 542–546 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    E. Berthier, E.W. Young, D. Beebe, Engineers are from PDMS-land, biologists are from Polystyrenia. Lab. Chip. 12, 1224–1237 (2012)CrossRefGoogle Scholar
  18. 18.
    B.C.K. Tee, A. Chortos, R.R. Dunn, G. Schwartz, E. Eason, Z. Bao, Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 24, 5427–5434 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, X. Wang, Y. Wu, J. Jie, X. Zhang, Y. Xing, H. Wu, B. Zou, X. Zhang, X. Zhang, Aligned ultralong nanowire arrays and their application in flexible photodetector devices. J. Mater. Chem. 22, 14357–14362 (2012)CrossRefGoogle Scholar
  20. 20.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 457, 706–710 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Y.-H. Hsiao, C.-Y. Chen, L.-C. Huang, G.-J. Lin, D.-H. Lien, J.-J. Huang, J.-H. He, Light extraction enhancement with radiation pattern shaping of LEDs by waveguiding nanorods with impedance-matching tips. Nanoscale. 6, 2624–2628 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    R. Zou, G. He, K. Xu, Q. Liu, Z. Zhang, J. Hu, ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1, 8445–8452 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Xu, Z. Chen, J.A. Zapien, C.S. Lee, W. Zhang, Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. Adv. Mater. 26, 5337–5367 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Cheng, B. Yan, S.M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, H.J. Fan, Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces. 2, 1824–1828 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Li, M. Zheng, L. Ma, M. Zhong, W. Shen, Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force. Inorg. Chem. 47, 3140–3143 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Jeong, D.J. Park, H.S. Lee, Y.H. Ko, J.S. Yu, S.-B. Choi, D.-S. Lee, E.-K. Suh, M.S. Jeong, Light-extraction enhancement of a GaN-based LED covered with ZnO nanorod arrays. Nanoscale. 6, 4371–4378 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    S. Dai, D. Zhang, Q. Shi, X. Han, S. Wang, Z. Du, Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments. CrystEngComm. 15, 5417–5424 (2013)CrossRefGoogle Scholar
  28. 28.
    Y. Qiu, H. Zhang, L. Hu, D. Yang, L. Wang, B. Wang, J. Ji, G. Liu, X. Liu, J. Lin, Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale. 4, 6568–6573 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    B. Liu, Z. Wang, Y. Dong, Y. Zhu, Y. Gong, S. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. J. Mater. Chem. 22, 9379–9384 (2012)CrossRefGoogle Scholar
  30. 30.
    I.-C. Yao, T.-Y. Tseng, P. Lin, ZnO nanorods grown on polymer substrates as UV photodetectors. Sens. Actuators. A. Phys. 178, 26–31 (2012)CrossRefGoogle Scholar
  31. 31.
    L. Lin, Y. Hu, C. Xu, Y. Zhang, R. Zhang, X. Wen, Z. Lin Wang, Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy. 2, 75–81 (2013)CrossRefGoogle Scholar
  32. 32.
    S.M. Lee, J. Upping, A. Bielawny, M. Knez, Structure-based color of natural petals discriminated by polymer replication. ACS Appl. Mater. Interfaces. 3, 30–34 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Yong, F. Chen, Q. Yang, D. Zhang, H. Bian, G. Du, J. Si, X. Meng, X. Hou, Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays. Langmuir. 29, 3274–3279 (2013)CrossRefGoogle Scholar
  34. 34.
    H.-H. Park, X. Zhang, K.W. Lee, K.H. Kim, S.H. Jung, D.S. Park, Y.S. Choi, H.-B. Shin, H.K. Sung, K.H. Park et al., Position-controlled hydrothermal growth of ZnO nanorods on arbitrary substrates with a patterned seed layer via ultraviolet-assisted nanoimprint lithography. CrystEngComm. 15, 3463 (2013)CrossRefGoogle Scholar
  35. 35.
    H. Liu, Y. Wang, J. Huang, Z. Chen, G. Chen, Y. Lai, Bioinspired surfaces with superamphiphobic properties: concepts, synthesis, and applications. Adv. Funct. Mater. 28, 1707415 (2018)CrossRefGoogle Scholar
  36. 36.
    Y. Ning, Z. Zhang, F. Teng, X. Fang, Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small. 14, 1703754 (2018)CrossRefGoogle Scholar
  37. 37.
    N. Nasiri, R. Bo, L. Fu, A. Tricoli, Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors. Nanoscale. 9, 2059–2067 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Micro/Nano Photonic Materials and Applications, National Demonstration Center for Experimental Physics and Electronics Education, School of Physics and ElectronicsHenan UniversityKaifengPeople’s Republic of China
  2. 2.Key Lab for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifengPeople’s Republic of China

Personalised recommendations