Applied Physics A

, 125:160 | Cite as

One-step fabrication of PEI-modified GO particles for CO2 capture

  • Yi He
  • Yu Xia
  • Jin Zhao
  • Yongjiao SongEmail author
  • Longfei Yi
  • Lijuan ZhaoEmail author


Carbon dioxide (CO2) emissions to the atmosphere are causing increased public concern due to the consequence of global climate change, and solid adsorbents are one of the most promising options for CO2 capture. A fresh method for the fabrication of amine-modified CO2 solid adsorbents was proposed. Graphene oxide (GO) was modified by different concentrations of polyethylenimine (PEI) by a one-step method. The physical chemical structure and adsorption/desorption properties were characterized in detail. Results showed that the PEI-GO solid adsorbents were successfully fabricated and the particles were uniform, controllable and intact. The CO2 adsorption properties of PEI-GO solid adsorbents were measured, and the solid adsorbents exhibited good CO2 adsorption capacity (128.1 mg/g) at 75 °C. In addition, the PEI-GO solid adsorbents were regenerable and exhibited good stability. Accordingly, this work stands out as a promising solution to a distinct way for the fabrication technology of CO2 solid adsorbents.



This work was financially supported by the National Natural Science Foundation of China (Grant nos: 51873133 and 51873110) and the Opening Experiment Project of Sichuan Normal University (Grant no: KFSY2018017).


  1. 1.
    T. Seki, Y. Kokubo, S. Ichikawa, T. Suzuki, Y. Kayaki, T. Ikariya, Mesoporous silica-catalysed continuous chemical fixation of CO(2) with N,N’-dimethylethylenediamine in supercritical CO(2): the efficient synthesis of 1,3-dimethyl-2-imidazolidinone. Chem. Commun. 3(3), 349 (2009)Google Scholar
  2. 2.
    P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495(7439), 80 (2013)ADSGoogle Scholar
  3. 3.
    R.A. Khatri, S.S.C. Chuang, Y. Soong, M.M. Gray, Thermal and chemical stability of regenerable solid amine sorbent for CO{sub 2} capture. Energy Fuels 20(4), 1514 (2006)Google Scholar
  4. 4.
    M.Z. Jacobson, Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2(2), 148 (2009)Google Scholar
  5. 5.
    S. Chu, Carbon capture and sequestration. Science 325(5948), 1599 (2009)Google Scholar
  6. 6.
    G.T. Rochelle, Amine scrubbing for CO2 capture. Science 325(5948), 1652 (2009)ADSGoogle Scholar
  7. 7.
    I.V. Harbou, S. Hoch, H.P. Mangalapally, R. Notz, G. Sieder, H. Garcia, O. Spuhl, H. Hasse, Removal of carbon dioxide from flue gases with aqueous MEA solution containing ethanol. Chem. Eng. Process. Process Intensif. 75(1), 81 (2014)Google Scholar
  8. 8.
    A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation. J. Membr. Sci. 359(1), 115 (2010)Google Scholar
  9. 9.
    S. Loganathan, M. Tikmani, A.K. Ghoshal, Novel pore-expanded MCM-41 for CO2 capture: synthesis and characterization. Langmuir Acs J. Surf. Colloids 29(10), 3491 (2013)Google Scholar
  10. 10.
    W.K. Hsu, Y.Q. Zhu, S. Trasobares, H. Terrones, M. Terrones, N. Grobert, H. Takikawa, J.P. Hare, H.W. Kroto, D.R.M. Walton, Solid-phase production of carbon nanotubes. Appl. Phys. A 68(4), 493 (1999)ADSGoogle Scholar
  11. 11.
    L. Zbroniec, A. Martucci, T. Sasaki, N. Koshizaki, Optical CO gas sensing using nanostructured NiO and NiO/SiO2 nanocomposites fabricated by PLD and sol–gel methods. Appl. Phys. A 79(4–6), 1303 (2004)ADSGoogle Scholar
  12. 12.
    W.C. Sun, C.B. Yong, M.H. Li, Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine. Chem. Eng. Sci. 60(2), 503 (2005)Google Scholar
  13. 13.
    R.S. Haszeldine, Carbon capture and storage: how green can black be? Science 325(5948), 1647 (2009)ADSGoogle Scholar
  14. 14.
    M.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies: A review. Energy 46(1), 431 (2012)Google Scholar
  15. 15.
    D. Aaron, C. Tsouris, Separation of CO2 from flue gas: a review. Sep. Sci. Technol. 40(1–3), 321 (2005)Google Scholar
  16. 16.
    R.V. Siriwardane, M.S. Shen, E.P.F. And, J.A. Poston, Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15(2), 279 (2001)Google Scholar
  17. 17.
    Z. Zhang, H. Wang, X. Chen, C. Zhu, W. Wei, Y. Sun, Chromium-based metal–organic framework/mesoporous carbon composite: synthesis, characterization and CO2 adsorption. Adsorpt. J. Int. Adsorpt. Soc. 21(1–2), 77 (2015)Google Scholar
  18. 18.
    D. Wang, X. Ma, C. Sentorunshalaby, C. Song, Development of carbon-based “molecular basket” sorbent for CO2 capture. Ind. Eng. Chem. Res. 51(7), 3048 (2012)Google Scholar
  19. 19.
    N. Díez, P. Álvarez, M. Granda, C. Blanco, R. Santamaría, R. Menéndez, CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods. Chem. Eng. J. 281, 704 (2015)Google Scholar
  20. 20.
    M. Moner-Girona, E. Martínez, J. Esteve, A. Roig, R. Solanas, E. Molins, Micromechanical properties of carbon–silica aerogel composites. Appl. Phys. A 74(1), 119 (2002)ADSGoogle Scholar
  21. 21.
    L. Zhilin, T. Yang, K. Zhang, H. Chen, Y. Yang, CO2 adsorption performance of different amine-based siliceous MCM-41 materials. J. Energy Chem. 24(3), 322 (2015)Google Scholar
  22. 22.
    X. Zhao, X. Hu, G. Hu, R. Bai, W. Dai, M. Fan, M. Luo, Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine. J. Mater. Chem. A 1(20), 6208 (2013)Google Scholar
  23. 23.
    M.B. Yue, Y. Chun, Y. Cao, X. Dong, J.H. Zhu, CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv. Func. Mater. 16(13), 1717 (2010)Google Scholar
  24. 24.
    D.P. Bezerra, R.S. Oliveira, R.S. Vieira, C.L.C. Jr, D.C.S. Azevedo, Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorpt. J. Int. Adsorpt. Soc. 17(1), 235 (2011)Google Scholar
  25. 25.
    L. Ma, R. Bai, G. Hu, R. Chen, X. Hu, W. Dai, H.F.M. Dacosta, M. Fan, Capturing CO2 with amine-impregnated titanium oxides. Energy Fuels 27(9), 5433 (2013)Google Scholar
  26. 26.
    B. Demeneix, J.P. Behr, Polyethylenimine (PEI). Adv. Genet. 53(1), 215 (2005)Google Scholar
  27. 27.
    C. Chen, W.S. Ahn, CO2 capture using mesoporous alumina prepared by a sol–gel process. Chem. Eng. J. 166(2), 646 (2011)Google Scholar
  28. 28.
    H. Kassab, M. Maksoud, S. Aguado, M. Peratitus, B. Albela, L. Bonneviot, Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture. Rsc Adv. 2(6), 2508 (2012)Google Scholar
  29. 29.
    W.J. Son, J.S. Choi, W.S. Ahn, Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113(1), 31 (2008)Google Scholar
  30. 30.
    Y. Du, Z. Du, W. Zou, H. Li, J. Mi, C. Zhang, Carbon dioxide adsorbent based on rich amines loaded nano-silica. J. Colloid Interface Sci. 409(11), 123 (2013)ADSGoogle Scholar
  31. 31.
    T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5(1), 52 (2013)ADSGoogle Scholar
  32. 32.
    A.I. Hadarig, C. Vázquez, M. Fernández, S.V. Hoeye, G.R. Hotopan, R. Camblor, F.L. Heras, Experimental analysis of the high-order harmonic components generation in few-layer graphene. Appl. Phys. A 118(1), 83 (2015)ADSGoogle Scholar
  33. 33.
    W.S.H. Jr, R.E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc. (ACS Publ.) Am. Chem. Soc. 80(6), 1339 (1958)Google Scholar
  34. 34.
    X. Xu, C. Song, J.M. Andrésen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62(1), 29 (2003)Google Scholar
  35. 35.
    Q. Fang, B. Chen, Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification. J. Mater. Chem. A 2(23), 8941 (2014)Google Scholar
  36. 36.
    Y. Zhao, H. Ding, Z. Qin, Preparation and characterization of aminated graphite oxide for CO2 capture. Appl. Surf. Sci. 258(10), 4301 (2012)ADSGoogle Scholar
  37. 37.
    D.W. Lee, J.W. Seo, Formation of phenol groups in hydrated graphite oxide. J. Phys. Chem. C 115(25), 12483 (2011)Google Scholar
  38. 38.
    H.C. Schniepp, J.L. Li, M.J. Mcallister, H. Sai, M. Herreraalonso, D.H. Adamson, R.K. Prud’Homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535 (2006)Google Scholar
  39. 39.
    Z.Y. Sui, Y. Cui, J.H. Zhu, B.H. Han, Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. Acs Appl. Mater. Interfaces 5(18), 9172 (2013)Google Scholar
  40. 40.
    Q. Liu, J. Shi, J. Sun, T. Wang, L. Zeng, G. Jiang, Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew. Chem. Int. Ed. 123(26), 5913 (2011)Google Scholar
  41. 41.
    J. Liu, H. Jeong, J. Liu, K. Lee, J.Y. Park, Y.H. Ahn, S. Lee, Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48(8), 2282 (2010)Google Scholar
  42. 42.
    M.C. Hsiao, S.H. Liao, M.Y. Yen, P.I. Liu, N.W. Pu, C.A. Wang, C.C. Ma, Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. Acs Appl. Mater. Interfaces 2(11), 3092 (2010)Google Scholar
  43. 43.
    G.J. Shin, K.Y. Rhee, S.J. Park, Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. Int. J. Hydrogen Energy 41(32), 14351 (2016)Google Scholar
  44. 44.
    C. Punckt, F. Muckel, S. Wolff, I.A. Aksay, The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Appl. Phys. Lett. 102(2), 8535 (2013)Google Scholar
  45. 45.
    X. Wang, X. Ma, C. Song, D.R. Locke, S. Siefert, R.E. Winans, J. Möllmer, M. Lange, A. Möller, R. Gläser, Molecular basket sorbents polyethylenimine–SBA-15 for CO 2 capture from flue gas: characterization and sorption properties. Microporous Mesoporous Mater. 169(169), 103 (2013)Google Scholar
  46. 46.
    X. Xu, C. Song, J.M. Andresen, B.G.M. And, A.W. Scaroni, Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16(6), 1463 (2002)Google Scholar
  47. 47.
    A.D. Ebner, M.L. Gray, N.G. Chisholm, Q.T. Black, D.D. Mumford, M.A. Nicholson, J.A. Ritter, Suitability of a solid amine sorbent for CO2 capture by pressure swing adsorption. Ind. Eng. Chem. Res 50(9), 5634 (2011)Google Scholar
  48. 48.
    M.G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, CO capture by adsorption with nitrogen enriched carbons. Fuel 86(14), 2204 (2007)Google Scholar
  49. 49.
    W. Wang, Q. Zeng, M. Li, W. Zheng, D. Christianson, J. Economy, Adsorptive removal of carbon dioxide using polyethyleneimine loaded glass fiber in a fixed bed. Colloids Surf. A Physicochem. Eng. Aspects 481(18), 117 (2015)Google Scholar
  50. 50.
    M.G. Plaza, C. Pevida, B. Arias, J. Fermoso, A. Arenillas, F. Rubiera, J.J. Pis, Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture. J. Thermal Anal. Calorimetry 92(2), 601 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina

Personalised recommendations