Advertisement

Applied Physics A

, 125:148 | Cite as

In situ XRD analyses for asymmetric responses of poled PLZT ceramics during electric fatigue

  • Fengjuan YangEmail author
  • Xuan Cheng
  • Ying ZhangEmail author
Article
  • 12 Downloads

Abstract

Electric fatigue behaviors of the poled lanthanum-doped lead zirconate titanate (PLZT) ceramics were investigated using a home-made electric loading apparatus in conjunction with a conventional X-ray diffractometer. The XRD data were measured under actions of the applied direct current electric fields on the as-received poled PLZT specimens being experienced various cycles (10N) of alternating current (AC) electric fields. Experimental data showed that in addition to apparent degradation in remnant polarization, asymmetries in hysteresis loops and fraction of 90° domain switching curves were observed. It was found that an offset electrical field (\(\Delta {{\text{E}}_N}\)) was induced in the poled specimen by polarization with its direction against the direction of the polarization. Furthermore, the magnitude of \(\Delta {{\text{E}}_N}\) and the degree of asymmetry (δN) decreased as the number of AC electric fatigue cycles (10N) varied from 100 to 106. In situ XRD data suggested that the poled specimen exhibited different abilities to reorient a-domains into c-domains when the applied electric fields were opposite. The δN not only depended linearly on \(\Delta {{\text{E}}_N}\), but also on abilities of the poled specimen to reorient a-domains into c-domains.

Notes

Acknowledgements

The authors wish to acknowledge the financial supports from the National Natural Science Foundation of China (11372263) and the Fujian Key Laboratory of Advanced Materials (AML201501).

Author contributions

F-JY designed the experiments and performed all the measurements; XC assisted the manuscript preparation; YZ prepared the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Q.Y. Jiang, E.C. Subbarao, J. Appl. Phys. 75, 7433 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    M. Promsawat, M. Deluca, S. Kampoosiri, B. Marungsri, S. Pojprapai, J. Eur. Ceram. Soc. 37(5), 2047 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Antony Jeyaseelan, D. Rangappa, S. Dutta, Thin Solid Films 642, 136 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    M. Brazier, S. Mansour, M. McElfresh, Appl. Phys. Lett. 74, 4032 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Anderson, G.W. Brady, W.J. Merz, J.P. Remeika, J. Appl. Phys. 26, 1387 (1955)ADSCrossRefGoogle Scholar
  6. 6.
    D.C. Nina Balke, T. Lupascu, A. Blair, Gruverman, J. Appl. Phys. 100, 114117 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    F. Chen, R. Schafranek, A. Wachau, S. Zhukov, J. Glaum, T. Granzow, H. von Seggern, A. Klein, J. Appl. Phys. 108, 104106 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    S. Pojprapai, J. Russell, H. Man, J.L. Jones, J.E. Daniels, M. Hoffman, Acta Mater. 57(13), 3932 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Takahashi, Ferroelectrics 41, 143 (1982)CrossRefGoogle Scholar
  10. 10.
    S. Takahashi, Jpn. J. Appl. Phys. 20, 95 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    V. Gopalan, M.C. Gupta, Appl. Phys. Lett. 68(7), 888 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    I.S. Baturin, A.R. Akhmatkhanov, V.Y. Shur, M.S. Nebogatikov, M.A. Dolbilov, E.A. Rodina, Ferroelectrics 374, 1 (2008)CrossRefGoogle Scholar
  13. 13.
    V. Gopalan, M.C. Gupta, J. Appl. Phys. 80(11), 6099 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    X.D. Qi, E.W. Sun, W.M. Lü, S.Y. Li, B. Yang, R. Zhang, W.W. Cao, CrystEngComm, 21,348(2019)CrossRefGoogle Scholar
  15. 15.
    X.D. Qi, E.W. Sun, S.Y. Li, W.M. Lü, R. Zhang, B. Yang, W.W. Cao, J. Mater. Sci. 53, 12762 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    G. Arlt, H. Neumann, Ferroelectrics 87, 109 (1988)CrossRefGoogle Scholar
  17. 17.
    Y.X. Yan, Y.J. Feng, Z.M. Li, Mater. Lett. 164, 248 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Yang, E.W. Sun, B. Yang, W.W. Cao, J. Phys. D: Appl. Phys. 51, 415303 (2018)CrossRefGoogle Scholar
  19. 19.
    G. Du, R.H. Liang, L. Wang, K. Li, W.B. Zhang, G.S. Wang, X.L. Dong, Ceram. Int. 39, 7703 (2013)CrossRefGoogle Scholar
  20. 20.
    G. Du, R.H. Liang, W. Li, K. Li, W.B. Zhang, G.S. Wang, X.L. Dong, Appl. Phys. Lett. 102, 142903 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S. Okamura, S. Miyata, Y. Mizutani, T. Nishida, T. Shiosaki, Jpn. J. Appl. Phys. 38, 5364 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    L. Yu, S.W. Yu, X.Q. Feng, Mater. Sci. Eng. A 459, 273 (2007)CrossRefGoogle Scholar
  23. 23.
    S.W. Yu, L. Yu, Microsyst. Technol. 15, 33 (2009)CrossRefGoogle Scholar
  24. 24.
    F. Yang, Y.C. Zhou, M.H. Tang, F. Liu, J. Appl. Phys. 106, 0141101 (2009)Google Scholar
  25. 25.
    Y. Zhang, D.C. Lupascu, E. Aulbach, I. Baturin, A. Bell, J. Rodel, Acta Mater. 53, 2203 (2005)CrossRefGoogle Scholar
  26. 26.
    T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, J. Appl. Phys. 108, 074107 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    T.M. Kamel, G. de With, J. Eur. Ceram. Soc. 28, 1827 (2008)CrossRefGoogle Scholar
  28. 28.
    K. ABE, S. Komatsu, N. Yanase, K. Sano, T. Kawakubo, Jpn. J. Appl. Phys. 36, 5846 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    M. Ozgul, S. Trolier-McKinstry, C.A. Randall, J. Appl. Phys. 95, 4296 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Y.K. Gao, K. Uchino, D. Viehland, J. Appl. Phys. 101, 0541091 (2007)Google Scholar
  31. 31.
    J.K. Lee et al., Acta Mater. 61, 6765 (2013)CrossRefGoogle Scholar
  32. 32.
    M. Liu, K.J. Hsia, M.R. Sardela, J. Am. Ceram. Soc. 88, 210 (2005)CrossRefGoogle Scholar
  33. 33.
    M. Liu, K.J. Hsia, Appl. Phys. Lett. 83, 3978 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Zhang, Z.W. Chen, X. Cheng, S. Zhang, Acta Metall. Sin. 40, 1299 (2004)Google Scholar
  35. 35.
    Y. Saito, Jpn, J. Appl. Phys. 36, 5963 (1997)CrossRefGoogle Scholar
  36. 36.
    F.J. Yang, X. Cheng, Y. Zhang, J. Chin. Ceram. Soc. 43, 292 (2015)Google Scholar
  37. 37.
    R.W. James, The optical principles of the diffraction of X-rays (George Bell & Sons, London, 1959)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Xiamen Institute of TechnologyXiamenPeople’s Republic of China
  2. 2.Department of Materials Science and Engineering, College of MaterialsXiamen UniversityXiamenPeople’s Republic of China
  3. 3.Fujian Key Laboratory of Advanced MaterialsXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations