Applied Physics A

, 125:135 | Cite as

Biodegradability of poly(lactic-co-glycolic acid) irradiated with femtosecond laser pulses without material removal

  • Naonari Kondo
  • Mitsuhiro TerakawaEmail author


The degradation rates of biodegradable polymers are necessary to be controlled for tissue scaffold applications. In this work, we demonstrate that the degradation rate of poly(lactic-co-glycolic acid) (PLGA) was accelerated by irradiating with femtosecond laser pulses under the condition where material removal, i.e., laser ablation had not occurred. Scanning electron microscopy observation showed that the degradation rate was accelerated without significant laser ablation. The analysis of Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the chemical properties of the PLGA had changed by femtosecond laser pulses irradiation. Furthermore, we have investigated the degradation of PLGA when the femtosecond laser pulses were focused inside the material. After the degradation, the PLGA showed enhanced optical scattering region in the depth of 300 µm from the surface. The results indicate that high-aspect-ratio modification and degradation are possible by changing the depth of focus of femtosecond laser pulses under the conditions where the direct removal of the material was not occurred.



This work was supported in part by KAKENHI (No. 18H03551).


  1. 1.
    Y. Ikada, H. Tsuji, Macromol. Rapid Commun. 21, 117 (2000)CrossRefGoogle Scholar
  2. 2.
    H. Ito, A. Minami, H. Tanino, T. Matsuno, Acta Orthop. Scand. 73, 60 (2002)CrossRefGoogle Scholar
  3. 3.
    L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, Nat. Biotechnol. 12, 689 (1994)CrossRefGoogle Scholar
  4. 4.
    T. Hirotsu, T. Masuda, Y. Matumura, M. Takahashi, J. Photopolym. Sci. Technol. 10, 123 (1997)CrossRefGoogle Scholar
  5. 5.
    E. Ikada, J. Photopolym. Sci. Technol. 10, 265 (1997)CrossRefGoogle Scholar
  6. 6.
    H. Tsuji, Y. Echizen, Y. Nishimura, J. Polym. Environ. 14, 239 (2006)CrossRefGoogle Scholar
  7. 7.
    P. Rytlewski, W. Mróz, M. Żenkiewicz, J. Czwartos, B. Budner, J. Mater. Process. Technol. 212, 1700 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Bhatla, Y.L. Yao, J. Manuf. Sci. Eng. (2009) CrossRefGoogle Scholar
  9. 9.
    S. Gaspard, M. Oujja, R. de Nalda, C. Abrusci, F. Catalina, L. Bañares, S. Lazare, M. Castillejo, Appl. Surf. Sci. 254, 1179 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Antończak, B.D. Stępak, M. Gazińska, K. Szustakiewicz, Proc. SPIE (2018) CrossRefGoogle Scholar
  11. 11.
    A. Shibata, S. Yada, M. Terakawa, Sci. Rep. 6, 27884 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    S.G. Kazarian, K.L.A. Chan, Analyst 138, 1940 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    M. Vert, G. Schwarch, J. Coudane, J. Macromol. Sci. A 32, 787 (1995)CrossRefGoogle Scholar
  14. 14.
    R. Krajcar, J. Siegel, P. Slepička, P. Fitl, V. Švorčík, Mater. Lett. 117, 184 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Slepička, A. Chaloupka, P. Sajdl, J. Heitz, V. Hnatowicz, V. Švorčík, Appl. Surf. Sci. 257, 6021 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    B.D. Stępak, A.J. Antończak, K. Szustakiewicz, P.E. Kozioł, K.M. Abramski, Polym. Degrad. Stab. 110, 156 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Integrated Design EngineeringKeio UniversityYokohamaJapan
  2. 2.Department of Electronics and Electrical EngineeringKeio UniversityYokohamaJapan

Personalised recommendations