Advertisement

Applied Physics A

, 125:155 | Cite as

Effect of oxygen pressure on the structural and optical properties of BaSnO3 films prepared by pulsed laser deposition method

  • Jibi John
  • S. R. Chalana
  • Radhakrishna Prabhu
  • V. P. Mahadevan PillaiEmail author
Article
  • 16 Downloads

Abstract

BaSnO3 thin films were deposited on quartz substrate by pulsed laser deposition technique under different background oxygen pressures and the effects of oxygen pressure on the structural, morphological and optical properties of BaSnO3 thin films are systematically investigated using different characterization techniques. The BaSnO3 films deposited without and with oxygen pressures are polycrystalline in nature with cubic crystalline phase. Moderate oxygen ambience favors enhanced crystallinity of the BaSnO3 films and 0.02 mbar is found to be optimum oxygen pressure for highest crystallinity. The surface morphology of the deposited films was strongly affected by the oxygen pressure in the deposition chamber. A systematic increase of film thickness and decrease of RMS surface roughness is observed with increase in oxygen pressure. XPS analysis reveals that barium is in the + 2 oxidation state and Sn is in the + 4 oxidation state in the film deposited at optimum oxygen pressure of 0.02 mbar. The deposited BaSnO3 films have photoluminescence emissions in the visible region and have high transmittance in the visible and infrared regions. The BaSnO3 films deposited at oxygen ambience shows a blue shift in the optical band gap. The optimized film shows high crystallinity, high value of transmittance and wide band gap energy which indicates its suitability for optoelectronic devices.

Notes

Acknowledgements

The authors acknowledge the SICC, University of Kerala for providing the facilities for the characterization of our samples.

Supplementary material

339_2019_2432_MOESM1_ESM.docx (392 kb)
Supplementary material 1 (DOCX 392 KB)

References

  1. 1.
    E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. .Albuquerque, J. Appl. Phys. 112, 043703 (2012).  https://doi.org/10.1063/1.4745873 ADSCrossRefGoogle Scholar
  2. 2.
    S. Upadhyay, O. Parkash, D. Kumar, J. Phys. D. Appl. Phys (2004).  https://doi.org/10.1088/0022-3727/37/10/011 CrossRefGoogle Scholar
  3. 3.
    J. Cerda, J. Arbiol, R. Diaz, G. Dezanneau, J.R. Morante, Mater. Lett. 56, 131–136 (2002)CrossRefGoogle Scholar
  4. 4.
    B. Ostrick, M. Fleischer, U. Lampe, H. Meixner, Sens. Actuators. B 44, 601–606 (1997)CrossRefGoogle Scholar
  5. 5.
    C. Doroftei, P.D. Popa, F. Iacomi, J. Optoelectr, Adv. Mater. 14(3–4), 413–417 (2012)Google Scholar
  6. 6.
    Q. Liu, J. Dai, Z. Liu, X. Zhang, G. Zhu, G. Ding, J. Phys. D. Appl. Phys. 43, 455401 (2010).  https://doi.org/10.1088/0022-3727/43/45/455401 ADSCrossRefGoogle Scholar
  7. 7.
    R.M. Katiliute, P. Seibutas, M. Ivanov, R. Grigalaitis, A. Stanulis, J. Banys, A. Kareiva, Ferroelectrics. 464, 49–58 (2014)CrossRefGoogle Scholar
  8. 8.
    W.J. Lee, H.J. Kim, J. Kang, D.H. Jang, T.H. Kim, J.H. Lee, K.H. Kim, Annu. Rev. Mater. Res. 47, 391–423 (2017)CrossRefGoogle Scholar
  9. 9.
    B. Liu, Q. Liu, Y. Zhang, Z. Liu, L. Geng, J. Alloys. Compd. 680, 343–349 (2016).  https://doi.org/10.1016/j.jallcom.2016.04.157 CrossRefGoogle Scholar
  10. 10.
    S.A. Salehizadeh, H.M. Chenari, M. Shabani, H.A. Ahangar, R. Zamiri, A. Rebelo, J.S. Kumar, M.P.F. .Graca, J.M.F. Ferreira, RSC. Adv. 8, 2100 (2018).  https://doi.org/10.1039/c7ra12442b CrossRefGoogle Scholar
  11. 11.
    M.J. Ansaree, S. Upadhyay, Ionics. 21, 2825–2838 (2015).  https://doi.org/10.1007/s11581-015-1476-1 CrossRefGoogle Scholar
  12. 12.
    J. U.Lampe, H. Gerblinger, Meixner, Sens. Actuators. B 24–25, 657–660 (1995)CrossRefGoogle Scholar
  13. 13.
    W. Lu, H. Schmidt, J. Mater. Sci. 42, 10007–10013 (2007).  https://doi.org/10.1007/s10853-007-2069-9 ADSCrossRefGoogle Scholar
  14. 14.
    S. Upadhyay, O. Parkash, J. Mater. Sci. Lett. 16, 1330–1332 (1997)CrossRefGoogle Scholar
  15. 15.
    H.J. Kim et al., Appl. Phys. Express 5, 061102 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S. Raghavan, T. Schumann, H. Kim, J.Y. Zhang, T.A. Cain, S. Stemmer, APL. Mater. 4, 016106 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    C.W. Zhao, B.C. Luo, C.L. Chen, RSC. Adv. 7, 19492 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Wu, S. Yu, L. He, L.Yang,W. Zhang, Sci. Rep. 7: 103.  https://doi.org/10.1038/s41598-017-00178-9
  19. 19.
    H. Yun, M. Topsakal, A. Prakash, K. Ganguly, C. Leighton, B. Jalan, R.M. Wentzcovitch, K.A. Mkhoyan, J.S. Jeong, J. Vac. Sci. Technol. A 36, 031503 (2018).  https://doi.org/10.1116/1.5026298 CrossRefGoogle Scholar
  20. 20.
    S. Sallis, D.O. Scanlon, S.C. Chae, N.F. Quackenbush, D.A. Fischer, Appl. Phys. Lett. 103, 042105 (2013).  https://doi.org/10.1063/1.4816511 ADSCrossRefGoogle Scholar
  21. 21.
    A.L. Febvrier, A.C. Galca, ACS. Appl. Mater. Interfaces. 4, 5227–5233 (2012)CrossRefGoogle Scholar
  22. 22.
    Z. Saroukhani, N. Tahmasebi, S.M. Mahdavi, A. Nemati, Bull. Mater.Sci. 38, 1645–1650 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Mizoguchi, P. Chen, P. Boolchand, V. Ksenofontov, C. Felser, P.W. Barnes, P.M. Woodward, Chem. Mater. (2013).  https://doi.org/10.1021/cm4019309 CrossRefGoogle Scholar
  24. 24.
    H.F. Wang, Q.Z. Liu, F. Chen, G.Y. Gao, W. Wu, X.H. Chen, J. Appl. Phys. 101, 106105 (2007).  https://doi.org/10.1063/1.2736629 ADSCrossRefGoogle Scholar
  25. 25.
    Q. Liu, J. Dai, Y. Zhang, H. Li, B. Li, Z. Liu, W. Wang, J. Alloys. Compd. 655, 389–394 (2016)CrossRefGoogle Scholar
  26. 26.
    P.V. Wadekar, J. Alaria, M. O’Sullivan, N.L.O. Flack, T.D. Manning, L.J. Phillips, K. Durose, O. Lozano, S.Lucas,J.B. Claridge, M.J. Rosseinsky, Appl. Phys. Lett. 105, 052104 (2014).  https://doi.org/10.1063/1.4891816 ADSCrossRefGoogle Scholar
  27. 27.
    D.J. Singh, Q. Xu, K.P. Ong, Appl. Phys. Lett. 104, 011910 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    J. Zhang, D.Y. Zhou, L. li, Z. Chen, M. Szabadi, P. Hess, Thin. Solid. Films. 287, 101–103 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    M.C.F. Alves, R.M.M. Marinho, G.P. Casali, M. Siu-Li, S.De´ Putier, M. Guilloux-Viry, A.G. Souza, E. Longo, I.T. Weber, I.M.G. Santos, V. Bouquet, J. Solid. State. Chem. 199, ,34–41 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    K.K. James, P.S. Krishnaprasad, K. Hasna, M.K. Jayaraj, J. Phys. Chem. Solids. 76, 64–69 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    D.W. Ba¨uerle, Laser Processing and Chemistry (Springer, Heidelberg, 2011)CrossRefGoogle Scholar
  32. 32.
    L.M. de Oliveira, V. Bouquet, V. Dorcet, S. Ollivier, S. Députier, A. Gouveia, M. de Souza, E. Siu-Li, I. Longo, Távora, Weber, I.M.G. dos Santos, M. Guilloux-Viry, Surf. Coat. Technol. 313, 361–373 (2017).  https://doi.org/10.1016/j.surfcoat.2017.01.082 CrossRefGoogle Scholar
  33. 33.
    H. Sano, R.H. Herberh, J. Inorg. Nucl. Chem. 30, 409–413 (1968)CrossRefGoogle Scholar
  34. 34.
    U.S. Kumari, P. Suresh, A.V.P. Rao, Int. Res. J. Pure. Appl. Chem. 3(4), 347–356 (2013)CrossRefGoogle Scholar
  35. 35.
    T. Chen, X.M. Li, S. Zhang, H.R. Zeng, J. Cryst. Growth. 270, 553–559 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    X. Zhang, W. Ren, P. Shi, X. Chen, X. Wu, Appl. Surf. Sci. 256, 1861–1866 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction in Diffraction III: Real Samples, 3rd edn. (Addison-Wesley, Boston, Chap. 5,1978),p. 170Google Scholar
  38. 38.
    M. Wua, S. Yub, L. Hea, G. Zhanga, D. Linga, W. Zhang, Appl. Surf. Sci. 292, 219–224 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    S. Upadhyay, Bull. Mater.Sci. 36, 1019–1036 (2013)CrossRefGoogle Scholar
  40. 40.
    S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, V.P. MahadevanPillai, J. Lumin. 132, 944–952 (2012)CrossRefGoogle Scholar
  41. 41.
    G.K. Williamson, W.H. Hall, Acta. Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  42. 42.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)CrossRefGoogle Scholar
  43. 43.
    R.R. Mohanta, V.R.R. Medicherla, K.L. Mohanta, C. Nimai.V. Nayak.S. Solanki, Varma, Adv. Sci. Lett. 20, 584–587 (2014)CrossRefGoogle Scholar
  44. 44.
    M.R. Manju, K.S. Ajay, N.M. D’Souza, S. Hunagund, R.L. .Hadimani, V. Dayal, J. Magn. Magn. Mater. 452, 23–29 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    S.H. Butt, M.S. Rafique, K. Siraj, A. Latif, A. Afzal, M.S. Awan, S. Bashir, N. Iqbal, Appl. Phys. A 122, 658 (2016).  https://doi.org/10.1007/s00339-016-0189-2 ADSCrossRefGoogle Scholar
  46. 46.
    P. Singh, B.J. Brandenburg, P.S.P. Singh, S. Singh, D. Kumar, O. Prakash, Jpn. J. Appl. Phys. 47, 3540–3545 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    P. Nithyadharseni, M.V. Reddy, K.I. Ozoemena, F.I. Ezema, R.G. Balakrishna, B.V.R. Chowdari, J. Electrochem. Soc. 163(3), A540–A545 (2016)CrossRefGoogle Scholar
  48. 48.
    M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, J. Szuber, Thin. Solid. Films. 490, 36–42 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    J. Socratous, K.K. Banger, Y. Vaynzof, A. Sadhanala, A.D. Brown, A. Sepe, U. Steiner, H. Sirringhaus, Adv. Funct. Mater. (2015).  https://doi.org/10.1002/adfm.201404375 CrossRefGoogle Scholar
  50. 50.
    J.A.J. Thornton, Vac. Sci. Technol. 11, 666–670 (1974)ADSCrossRefGoogle Scholar
  51. 51.
    A.M. Engwall, Z. Rao, E. Chason, Mater. Des. 110, 616–623 (2016)CrossRefGoogle Scholar
  52. 52.
    Y. Yao, S.G. Lu, H. Chena, J. Appl. Phys. 96, 11 (2004)Google Scholar
  53. 53.
    S.H. Butt, M.S. Rafique, S. Bashir, U. Ilyas, K. Siraj, M.S. Awan, K. Mehmood, M. Rafique, A. Afzal, Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2017.06.074 CrossRefGoogle Scholar
  54. 54.
    J. Hu, R.G. Gordon, J. Appl. Phys. 71, 880 (1992).  https://doi.org/10.1063/1.351309 ADSCrossRefGoogle Scholar
  55. 55.
    F. Paraguay, D.W. Estrada, L.D.R. Acosta, N.E. Andrade, M. Miki-Yoshidac, Thin. Solid. Films. 350, 192–202 (1999)ADSCrossRefGoogle Scholar
  56. 56.
    V. Jayasree, R. Ratheesh, V. Ganesan, V.R. Reddy, C. Sudarsanakumar, V.P. MahadevanPillai, V.U. Nayar, Thin. Solid. Films. 517, 603–608 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    D. Beena, K.J. Lethy, R. Vinodkumar, V.P. MahadevanPillai, V. Ganesan, D.M. Phase, S.K. Sudheer, Appl. Surf. Sci. 255, 8334–8342 (2009).  https://doi.org/10.1016/j.apsusc.2009.05.057 ADSCrossRefGoogle Scholar
  58. 58.
    J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1971)Google Scholar
  59. 59.
    D. Gogova, A. Suwardi, Y.A. Kuznetsova, A.F. Zatsepin, L.A. Mochalov, A. Nezhdanov, B. Szyszka, Int. J. Adv. App. Phy. Res. 4, 000–000 (2017)CrossRefGoogle Scholar
  60. 60.
    K. Kunti, K.C. Sekhar, M. Pereira, M.J.M. Gomes, S.K. Sharma, AIP. Adv. 7, 015021 (2017)ADSCrossRefGoogle Scholar
  61. 61.
    K.J. Lethy, R. Beena, V.P. Vinodkumar, V. Mahadevanpillai, V. Ganesan, D.M. Sathe, Phase, Appl. Phys. A 91, 637–649 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    U. Kumar, Md.J. Ansaree, S. Upadhyay, Process. Appl. Ceram. 11 (3), 177–184 (2017)CrossRefGoogle Scholar
  63. 63.
    J.E. Sansonetti, W.C. Martin, J. Phys. Chem. Ref. Data. 34(4), 1559–2259 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jibi John
    • 1
  • S. R. Chalana
    • 1
  • Radhakrishna Prabhu
    • 2
  • V. P. Mahadevan Pillai
    • 1
    Email author
  1. 1.Department of OptoelectronicsUniversity of KeralaThiruvanthapuramIndia
  2. 2.School of EngineeringRobert Gordon UniversityAberdeenUK

Personalised recommendations