Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure
- 39 Downloads
Abstract
With the aim to design broadband microwave absorbers with optically transparent, flexible and stable performances in 8–18 GHz, a sandwich structure is designed and fabricated by sandwiching the periodic arrayed ITO film into two transparent and flexible polyvinyl chloride layers. With the induced metamaterial structure to tailor the effective input impedance, the proposed sandwich absorber can realize more than 90% absorption in 8–18 GHz for both TE and TM polarization when the incident angle is less than 30°. Meanwhile, the optical transmittance of the designed absorber reaches more than 80% transmittance with the wavelength larger than 532 nm, and the average optical transmittance for the visible light (400–800 nm) is 80.2%. The proposed absorber shows broadband microwave absorption in both X and Ku band with simultaneously high transmittance in visible frequencies, indicating that the proposed sandwich metamaterial absorber has great potentials for developing optical transparent absorbing devices.
Keywords
Microwave absorber Optically transparent Metamaterial FlexibleNotes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China [grant numbers 51725205, 51602258, 51521061 and 51332004] and the 111 project [grant number B08040].
References
- 1.F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)ADSCrossRefGoogle Scholar
- 2.X.W. Yin, L. Kong, L.T. Zhang, L.F. Cheng, N. Travitzky, P. Greil, Int. Mater. Rev. 59, 326–355 (2014)Google Scholar
- 3.D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70, 400–409 (2010)CrossRefGoogle Scholar
- 4.W.Y. Duan, X.W. Yin, Q. Li, X.M. Liu, L.F. Cheng, L.T. Zhang, J. Eur. Ceram. Soc. 34, 257–266 (2014)CrossRefGoogle Scholar
- 5.L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye, L. Zhang, L. Cheng, Z. Xu, J. Huang, Carbon 111, 94–102 (2017)CrossRefGoogle Scholar
- 6.Q. Zhou, X.W. Yin, F. Ye, X.F. Liu, L.F. Cheng, L.T. Zhang, Mater. Design 123, 46–53 (2017)CrossRefGoogle Scholar
- 7.D. Bensafieddine, F. Djerfaf, F. Chouireb, D. Vincent, Appl. Phys. A Mater. Sci. Process. 123, 248 (2017)ADSCrossRefGoogle Scholar
- 8.M.R.I. Faruque, M.J. Hossain, S.S. Islam, M.F. Bin, M.T. Jamlos, Islam, Appl. Phys. A Mater. Sci. Process. 123, 310 (2017)ADSCrossRefGoogle Scholar
- 9.L. Wang, C.D. Hu, X.X. Wu, Z.Z. Xia, W.J. Wen, Appl. Phys. A Mater. Sci. Process. 123, 651 (2017)ADSCrossRefGoogle Scholar
- 10.T. Shaw, D. Mitra, Appl. Phys. A Mater. Sci. Process. 124, 348 (2018)CrossRefGoogle Scholar
- 11.M. Grande, G.V. Bianco, M.A. Vincenti, D. de Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, A. D’Orazio, Opt. Express 24, 22788–22795 (2016)ADSCrossRefGoogle Scholar
- 12.K. Takizawa, O. Hashimoto, IEEE Trans. Microwave Theory Tech. 47, 1137–1141 (1999)ADSCrossRefGoogle Scholar
- 13.Y. Okano, S. Ogino, K. Ishikawa, IEEE Trans. Microwave Theory Tech. 60, 2456–2464 (2012)ADSCrossRefGoogle Scholar
- 14.H. Kurihara, Y. Hirai, K. Takizawa, T. Iwata, O. Hashimoto, IEICE Trans. Electron. E88c, 2350–2357 (2005)ADSCrossRefGoogle Scholar
- 15.Y. Zhang, J.P. Duan, B.Z. Zhang, W.D. Zhang, W.J. Wang, J. Alloy. Compd. 705, 262–268 (2017)CrossRefGoogle Scholar
- 16.F. Yu, J. Wang, J. Wang, H. Ma, H. Du, Z. Xu, S. Qu, J. Appl. Phys. 119, 134104 (2016)ADSCrossRefGoogle Scholar
- 17.L. Du, X. Du, L. Zhang, Q. An, W. Ma, H. Ran, H. Du, J. Eur. Ceram. Soc. 38, 2767–2773 (2018)CrossRefGoogle Scholar
- 18.T. Jang, H. Youn, Y.J. Shin, L.J. Guo, ACS Photonics 1, 279–284 (2014)CrossRefGoogle Scholar
- 19.C. Zhang, Q. Cheng, J. Yang, J. Zhao, T.J. Cui, Appl. Phys. Lett. 110, 143511 (2017)ADSCrossRefGoogle Scholar
- 20.D.W. Hu, J. Cao, W. Li, C. Zhang, T.L. Wu, Q.F. Li, Z.H. Chen, Y.L. Wang, J.G. Guan, Adv. Opt. Mater. 5, 1700109 (2017)CrossRefGoogle Scholar
- 21.W.W. Li, H. Jin, Z.H. Zeng, L.P. Zhang, H. Zhang, Z. Zhang, Carbon 121, 544–551 (2017)CrossRefGoogle Scholar
- 22.L.L. Wang, H.F. Zhang, X.K. Kong, B.R. Bian, 2016 progress in electromagnetics research symposium (Piers), pp. 1919–1922 (2016)Google Scholar
- 23.S.F. Lai, Y.H. Wu, J.J. Wang, W. Wu, W.H. Gu, Opt. Mater. Express 8, 1585–1592 (2018)ADSCrossRefGoogle Scholar
- 24.H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K.V. Srivastava, J. Ramkumar, S.A. Ramakrishna, J. Appl. Phys. 122, 105105 (2017)ADSCrossRefGoogle Scholar
- 25.C.Y. Chen, M.X. Jing, Z.C. Pi, S.W. Zhu, X.Q. Shen, Nanoscale Res. Lett. 10, 315 (2015)ADSCrossRefGoogle Scholar
- 26.S. Mallakpour, M. Javadpour, Polym. Compos. 38, 1800–1809 (2017)CrossRefGoogle Scholar
- 27.K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Compos. Sci. Technol. 66, 576–584 (2006)CrossRefGoogle Scholar
- 28.T. Wang, P. Wang, Y. Wang, L. Qiao, Mater. Design 95, 486–489 (2016)CrossRefGoogle Scholar
- 29.Q. Zhou, X.W. Yin, F. Ye, R. Mo, X.F. Liu, X.M. Fan, L.F. Cheng, L.T. Zhang, J. Am. Ceram. Soc. 101, 5552–5563 (2018)CrossRefGoogle Scholar
- 30.H. Liu, H. Cheng, H. Tian, Mater. Sci. Eng. B 179, 17–24 (2014)CrossRefGoogle Scholar
- 31.F. Costa, A. Monorchio, G. Manara, 2009 IEEE antennas and propagation society international symposium and USNC/URSI national radio science meeting, pp. 781–784 (2009)Google Scholar
- 32.K. Chen, L. Cui, Y.J. Feng, J.M. Zhao, T. Jiang, B. Zhu, Opt. Express 25, 5571–5579 (2017)ADSCrossRefGoogle Scholar
- 33.K.M. Gupta, N. Gupta, Optical Properties of Materials, and Materials for Opto-Electronic Devices (Wiley, New York, 2015)CrossRefGoogle Scholar