Effect of V and Y doping on the structural, optical and electronic properties of CdS (hexagonal and cubic phases)
- 30 Downloads
Abstract
Nano Cd1−xYxS and Cd1−xVxS (0 ≤ x ≤ 0.2) systems were synthesized by a thermolysis method. X-ray phase analysis indicated the presence of two phases, cubic and hexagonal structures, for some samples. The effect of doping on the cell parameters, Cd-tetrahedron dimension, crystallite size and the mixed phases’ percentages in the sample were examined applying X-ray Rietveld method. The energy gap of Y- or V-doped CdS was determined by ultraviolet spectroscopy technique. It is found out that the energy gap of V-doped CdS is less than the corresponding Y-doped CdS samples. Density function calculation (DFT) was used to confirm the decreasing in energy gap upon doping, and also to study the changes in absorption and dielectric properties of doped and undoped CdS samples in both cubic and hexagonal phases. The photoluminescence measurements revealed the presence of extra sub emissions spectra (yellow and green) upon doping CdS with Y or V compared with undoped CdS sample.
Notes
Acknowledgements
The authors thank MCX beamline stuff for helping with the SR-XRPD experiments which were conducted at the MCX beamline of Elettra Synchrotron, Trieste, Italy.
References
- 1.Z.K. Heiba, L. Arda, M.B. Mohamed, J. Magn. Magn. Mater. 389, 153 (2015)ADSCrossRefGoogle Scholar
- 2.Z.K. Heiba, M.B. Mohamed, N.G. Imam, N.Y. Mostafa, Colloid. Polym. Sci. 294(2), 357 (2016)CrossRefGoogle Scholar
- 3.Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Mol. Struct. 1136, 329 (2017)ADSCrossRefGoogle Scholar
- 4.Z.K. Heiba, M.B. Mohamed, A.M. Wahba, N.G. Imam, J. Electron. Mater. 47(1), 711 (2018)ADSCrossRefGoogle Scholar
- 5.K.S. Ramaiah, R.D. Pilkington, A.E. Hill, R.D. Tomlinson, A.K. Bhatnagar, Mater. Chem. Phys. 68, 22 (2001)CrossRefGoogle Scholar
- 6.M.B. Mohamed, M.H. Abdel-Kader, A.A. Alhazime, J.Q.M. Almarashi, J. Mol. Struct. 1155, 666 (2018)ADSCrossRefGoogle Scholar
- 7.A. Nabi, Z. Akhtar, T. Iqbal, A. Ali, M.A. Javid, J. Semicond. 38, 073001 (2017)ADSCrossRefGoogle Scholar
- 8.A.H. Mueller, M.A. Petruska, M. Achermann, D. Werder, E. Akhadov, D. Koleske, M. Hoffbauer, V.I. Klimov, Nano Lett. 5(6), 1039 (2005)ADSCrossRefGoogle Scholar
- 9.R.L. Morales, O.Z. Angel, G.T. Delgado, Appl. Surf. Sci. 175, 562 (2001)ADSCrossRefGoogle Scholar
- 10.R. Banerjee, R. Jayakrishnan, P. Ayyub, J. Phys. Condens. Matter 12(50), 10647 (2000)ADSCrossRefGoogle Scholar
- 11.S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 43, 91 (2005)ADSCrossRefGoogle Scholar
- 12.K. Okamoto, T. Yoshimi, S. Miura, Appl. Phys. Lett. 53, 678 (1988)ADSCrossRefGoogle Scholar
- 13.K.Deka, M.P.C.Kalita, J. Alloys Compd. 757, 209 (2018)CrossRefGoogle Scholar
- 14.G. Murtaza, S.M.A. Osama, M. Hassan, N.R.K. Watoo, Appl Phys A Mater Sci Process 124, 778 (2018)ADSCrossRefGoogle Scholar
- 15.S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, J. Alloys Compd. 513, 118 (2012)CrossRefGoogle Scholar
- 16.A.K. Bilal Ahmed, S. Ojha, Kumar, Spectrochim Acta A Mol. Biomol. Spectrosc. 179, 144 (2017)ADSCrossRefGoogle Scholar
- 17.M. Jayaraj, C. Vallabhan, J Electrochem Soc 138, 1512 (1991)CrossRefGoogle Scholar
- 18.K. Singh, S. Kumar, N.K. Verma, H.S. Bhatti, J. Nanopart. Res. 11, 1017 (2009)ADSCrossRefGoogle Scholar
- 19.A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, Appl. Phys. Lett. 83, 2 (2003)CrossRefGoogle Scholar
- 20.P.S. Chowdhury, A. Patra, Phys. Chem. Chem. Phys. 8, 1329 (2006)CrossRefGoogle Scholar
- 21.P. Wang, R. Zhao, Z. Li, T. Yang, M. Zhang, Cryst. Eng. Comm. 18, 2607 (2016)CrossRefGoogle Scholar
- 22.L. Lutterotti, Maud 2.33, http://www.ing.unitn.it/~maud/
- 23.J. Tauc, in The Optical properties of solid, ed. by A. Abeles (North Holland, Amsterdam, 1972), p. 277Google Scholar
- 24.J. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B Condens. Matter 46, 6671 (1992)ADSCrossRefGoogle Scholar
- 25.S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. Cryst. Mater. 220(5–6), 567 (2005)Google Scholar
- 26.J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
- 27.J.P. Perdew, K. Burke, M. Ernzerhof, Phys.Rev.Lett 77, 3865 (1996)ADSCrossRefGoogle Scholar
- 28.Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Alloys Compd. 618, 280–286 (2015)CrossRefGoogle Scholar
- 29.L. Saravanan, R. Jayavel, A. Pandurangan, J.-H. Liu, H.-Y. Miao, Mater. Res. Bull. 52, 128 (2014)CrossRefGoogle Scholar
- 30.Y. Hwang, Y. Um, J. Korean Phys. Soc. 65, 1691 (2014)ADSCrossRefGoogle Scholar
- 31.M.S. Hossain, R. Islam, K.A. Khan, Proc. Photon. North 2007 6796, 67961O (2007)CrossRefGoogle Scholar
- 32.H.A. Khawal, N.D. Raskar, U.P. Gawai, B.N. Dole, AIP Conf. Proc. 1728, 020431 (2016)CrossRefGoogle Scholar
- 33.K. Kanagasbapathy, S. Vetrivel, R. Rajasekaran, Optoelectron. Adv. Mater. 10(9–10), 720 (2016)Google Scholar
- 34.H. Ehrenreich, M.L. Cohen, Phys. Rev. 115, 786 (1959)ADSMathSciNetCrossRefGoogle Scholar
- 35.F. Wooten, Optical Properties of Solids (Academic, New York, 1972)Google Scholar
- 36.D.R. Penn, Phys. Rev. 128 (1962)2093Google Scholar
- 37.Z.K. Heiba, M.B. Mohamed, M.H.A. Kader, J. Electron. Mater. 47(5), 2945 (2018)Google Scholar
- 38.R. Morales, O. Angel, G.T. Delgado, Appl. Surf. Sci. 175, 562 (2001)ADSCrossRefGoogle Scholar
- 39.R. Viswanath, H.S.B. Naik, Y.K.G. Somalanaik, P. Kumar, P. Neelanjeneallu, K.N. Harish, M.C. Prabhakara, J. Nanotechnol. 2014, 1 (2014)CrossRefGoogle Scholar
- 40.A. Sahi, B.K. Pandey, R.K. Swarnkar, R. Gopal, Appl. Surf. Sci. 257, 9846 (2011)ADSCrossRefGoogle Scholar
- 41.V.L. Gayou, B.S. Hernández, M.R. López, C. ZúñigaIslas, J.A. Ascencio, J. Nano Res. 9, 139 (2010)CrossRefGoogle Scholar
- 42.A.I. Inamdar, S. Cho, Y. Jo, J. Kim, J. Han, H. Woo, R.S. Kalubarme, C.J. Park, H. Kim, S.M. Pawar, H. Im, Mater. Lett. 163, 126 (2016)CrossRefGoogle Scholar
- 43.P.M. Aneesh, M.K. Jayaraj, Bull. Mater. Sci. 33, 227 (2010)CrossRefGoogle Scholar
- 44.T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Mater. Sci. Eng. B 162, 179 (2009)CrossRefGoogle Scholar
- 45.J. Goldstein, M. Ohmer, S.M. Hegde, Y.F. Chen, J. Electr. Mater. 32, 783 (2003)ADSCrossRefGoogle Scholar
- 46.W. Joerger, M. Laasch, T. Kunz, M. Fiederle, J. Meinhardt, K.W. Benz, K. Scholz, W. Wendl, G. Müller-vogt, Cryst. Res. Technol. 32, 1103 (1997)CrossRefGoogle Scholar
- 47.I. Radevici, N. Nedeoglo, K. Sushkevich, H. Huhtinen, D. Nedeoglo, P. Paturi, Phys. B 503, 11 (2016)ADSCrossRefGoogle Scholar
- 48.H. Li, W. Jie, J. Cryst. Growth 257, 110 (2003)ADSCrossRefGoogle Scholar
- 49.M. Souissi, Z. Chine, A. Bchetnia, H. Touati, B. El Jani, Microelectron. J. 37, 1 (2006)CrossRefGoogle Scholar
- 50.G. Li, S.J. Chua, S.J. Xu, W. Wang, P. Li, B. Beaumont, P. Gibart, Appl. Phys. Lett. 74, 1114 (1999)CrossRefGoogle Scholar