Applied Physics A

, 125:126 | Cite as

Enhanced thermoelectric properties of the Lu-doped and CNT-dispersed Bi2Te3 alloy

  • Ruijuan Cao
  • Zheng Zhu
  • Xin-Jian Li
  • Xing Hu
  • Hongzhang SongEmail author


Bi2Te3 and Lutetium-doped Lu0.1Bi1.9Te3 nanopowders were prepared by the hydrothermal method. Different amounts of carbon nanotubes (CNTs) were dispersed into Lu0.1Bi1.9Te3 nanopowders and hot pressed into bulk samples with nominal chemical formula of Lu0.1Bi1.9Te3 + xwt% CNT (x = 0, 0.05, 0.1, 0.5, 1) to assess the effects of lutetium doping and CNT dispersing on the thermoelectric properties. The electrical resistivity decreased because of the increase of the carrier concentration and carrier mobility at a low CNTs content. Herein, a small amount of CNTs were used as conducting filler to provide a free path of carriers which would lead to an increase of carrier mobility, though a large number of CNTs mainly played an energy-filtering effect. The thermal conductivity of Lu0.1Bi1.9Te3 + xwt% CNT nanocomposite showed an evident decrease, which resulted from the enhanced phonon scattering by the point defects caused by Lu doping and the interfaces between Lu0.1Bi1.9Te3 and CNTs. Due to the decrease in the electrical resistivity and thermal conductivity, the figure of merit (ZT) of Lu0.1Bi1.9Te3 + 0.05 wt% CNT nanocomposite was higher than that of Bi2Te3 and Lu0.1Bi1.9Te3 when the temperature was below 473 K.



This study was supported by the National Natural Science Foundation of China (Grant No. 61774136), the China and Henan Postdoctoral Science Foundation (Grant No. 2018M630833), and the Key Programs for Science and Technology Development of Henan Province (Grant No. 182102210183).


  1. 1.
    L.E. Bell, Science 321, 1457–1461 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, Prog. Mater Sci. 97, 283–346 (2018)CrossRefGoogle Scholar
  3. 3.
    L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351, 141–144 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    L. Yang, Z.-G. Chen, M.S. Dargusch, J. Zou, Adv. Energy Mater. 8, 1701797 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Cao, H. Song, W. Gao, E. Li, X. Li, X. Hu, J. Alloy. Compd. 727, 326–331 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Chen, R. Ma, K. Wang, F. Gao, X. Hu, H. Song, Int. J. Mod. Phys. B 29(14), 1550082 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    W. Gao, G. Wang, X. Li, X. Hu, H. Song, Int. J. Mod. Phys. B 31(6), 1750042 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    F. Wu, Q. He, M. Tang, H. Song, Int. J. Mod. Phys. B 32(10), 1850123 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Zhu, Y. Zhang, H. Song, X.-J. Li, Appl. Phys. A 124, 747 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhu, Y. Zhang, H. Song, X.-J. Li, Appl. Phys. A 124, 871 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    L. Yao, F. Wu, X.X. Wang, R.J. Cao, X.J. Li, X. Hu, H.Z. Song, J. Electron. Mater. 45(6), 3053–3058 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    R. Venkatasubramanian, E. Siivola, T.C.B. O’Quinn. Nature 413, 597–602 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229–2232 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    F. Wu, H. Song, F. Gao, W. Shi, J. Jia, X. Hu, J. Electron. Mater. 42(6), 1140–1145 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    W. Gao, H. Chai, F. Wu, X. Li, X. Hu, H. Song, Ceram. Int. 43(7), 5723–5727 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Cao, E. Li, Q. Hu, Z. Zhu, Y. Zhang, X. Li, X. Hu, H. Song, Appl. Phys. A 124(10), 669 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Q. Hu, K. Wang, Y. Zhang, X. Li, H. Song, Mater. Res. Express 5(4), 045510 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Hu, Z. Zhu, Y. Zhang, X. Li, H. Song, Y. Zhang, J. Mater. Chem. A 6, 23417–23424 (2018)CrossRefGoogle Scholar
  19. 19.
    F. Gao, S.L. Leng, Z. Zhu, X.J. Li, X. Hu, H.Z. Song, J. Electron. Mater. 47(4), 2454–2460 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    H. Hazama, Y. Masuoka, H. Yamamoto, H. Suto, Y. Kinoshita, M. Ishikiriyama, R. Asahi, J. Alloy. Compd. 726, 578–586 (2017)CrossRefGoogle Scholar
  21. 21.
    E. Lee, J. Ko, J.-Y. Kim, W.-S. Seo, S.-M. Choi, K.H. Lee, W. Shim, W. Lee, J. Mater. Chem. C 4(6), 1313–1319 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Martin, L. Wang, L. Chen, G.S. Nolas, Phys. Rev. B 79(11), 115311 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Zhang, X.L. Wang, W.K. Yeoh, R.K. Zheng, C. Zhang, Appl. Phys. Lett. 101(3), 031909 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    F. Ren, H. Wang, P.A. Menchhofer, J.O. Kiggans, Appl. Phys. Lett. 103(22), 221907 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, J. Alloy. Compd. 661, 389–395 (2016)CrossRefGoogle Scholar
  26. 26.
    V.D. Blank, S.G. Buga, V.A. Kulbachinskii, V.G. Kytin, V.V. Medvedev, M.Y. Popov, P.B. Stepanov, V.F. Skok, Phys. Rev. B 86(7), 075416 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Y.-C. Lai, H.-J. Tsai, C.-I. Hung, H. Fujishiro, T. Naito, W.K. Hsu, Phys. Chem. Chem. Phys. 17(12), 8120–8124 (2015)CrossRefGoogle Scholar
  28. 28.
    B. Khasimsaheb, N.K. Singh, S. Bathula, B. Gahtori, D. Haranath, S. Neeleshwar, Curr. Appl. Phys. 17(2), 306–313 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    S. Kumar, D. Chaudhary, P.K. Dhawan, R.R. Yadav, N. Khare, Ceram. Int. 43(17), 14976–14982 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Pan, G.J. Weng, S.A. Meguid, W.S. Bao, Z.-H. Zhu, A.M.S. Hamouda, J. Appl. Phys. 110(12), 123715 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Y.B. Chen, X.L. Cao, R.X. Ma, F. Gao, X. Hu, H.Z. Song, J. Electron. Mater. 44(10), 3545–3549 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    F. Gao, Q. He, F. Wu, D. Yang, X. Hu, H. Song, Mod. Phys. Lett. B 29(26), 1550154 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    N.V. Nong, N. Pryds, S. Linderoth, M. Ohtaki, Adv. Mater. 23(21), 2484–2490 (2011)CrossRefGoogle Scholar
  34. 34.
    J. Yang, F. Wu, Z. Zhu, L. Yao, H. Song, X. Hu, J. Alloy. Compd. 619, 401–405 (2015)CrossRefGoogle Scholar
  35. 35.
    K.T. Kim, S.Y. Choi, E.H. Shin, K.S. Moon, H.Y. Koo, G.-G. Lee, G.H. Ha, Carbon 52, 541–549 (2013)CrossRefGoogle Scholar
  36. 36.
    Q. Lognoné, F. Gascoin, J. Alloy. Compd. 635, 107–111 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Phys. Rev. 133(4A), A1143–A1152 (1964)ADSCrossRefGoogle Scholar
  38. 38.
    X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Appl. Phys. Lett. 86(6), 062111 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    H. Bark, J.-S. Kim, H. Kim, J.-H. Yim, H. Lee, Curr. Appl. Phys. 13, S111–S114 (2013)CrossRefGoogle Scholar
  40. 40.
    S.V. Faleev, F. Léonard, Phys. Rev. B 77(21), 214304 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Pan, U. Aydemir, F.H. Sun, C.F. Wu, T.C. Chasapis, G.J. Snyder, J.F. Li, Adv. Sci. 4, 1700259 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Material Physics of Ministry of Education, School of Physics and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations