Advertisement

Applied Physics A

, 125:161 | Cite as

Transient thin-film spin-coating flow of chemically reactive and radiative Maxwell nanofluid over a rotating disk

  • Jawad AhmedEmail author
  • Masood Khan
  • Latif Ahmad
Article
  • 19 Downloads

Abstract

In recent years, the investigation on nanofluids has developed a hot topic among researchers, because in the presence of the nanoparticles in the fluids enhances appreciably the thermal conductivity of the fluid and thus improves the heat transfer characteristics. The current work aims to study the unsteady finite thin-film flow of upper convected Maxwell fluid due to horizontal rotating disk in the presence of nanoparticles. The development of a thin conducting liquid film on the surface of a rotating disk is investigated under the impacts of nonlinear thermal radiations, variable magnetic field, and Joule heating. A significant perspective of this attempt is to incorporate the features of exothermic chemical reaction with activation energy for Buongiorno’s model of nanofluid owing to their improved heat transfer. The leading equations of the governing problem are modeled by utilizing the notion of Boussinesq approximation. The non-dimensional analysis is performed to acquire the ordinary differential equations. A finite-difference-based numerical scheme, namely, bv4c is implemented for the numerical simulation of the nonlinear problem. The physical consequence of the active parameters, that influenced the model, are argued through graphs on nanofluid velocity, temperature, solute concentration, local Nusselt number, and Sherwood number. The obtained results intimate that nanofluid film thickness decay with the growing values of unsteadiness parameter, magnetic parameter, and Deborah number. It is noted that the nanoparticles’ volume fraction increases with incremented values of activation energy parameter. Moreover, the nanofluid temperature shows a remarkable increase with the thermophoresis parameter.

List of symbols

uvw

Velocity components

\(r,\varphi ,z\)

Cylindrical coordinate system

c

Stretching rate

a

Positive constant

\(\nu\)

Kinematic viscosity

\(\mu\)

Dynamic viscosity

\(\Omega\)

Rotation rate

B

Magnetic field

\(\lambda _{1}\)

Relaxation time

\(c_{\text {p}}\)

Specific heat at constant pressure

pT

Fluid pressure and temperature

\(T_{\text {s}}\)

Surface temperature

\(T_{0}\)

Temperature at the origin

t

Time

\(T_{\text {ref}}\)

Reference temperature

\(C_{\text {s}}\)

Surface concentration

\(C_{0}\)

Concentration at the origin

\(C_{\text {ref}}\)

Reference concentration

C

Fluid concentration

\(\rho\)

Fluid density

\(\eta\)

Dimensionless variable

\(B_{0}\)

Magnetic field strength

k

Fluid thermal conductivity

\(\alpha\)

Thermal diffusivity

\(\sigma ^{*}\)

Stephan–Boltzmann constant

\(k^{*}\)

Mean absorption coefficient

\(\tau\)

Heat capacities ratio

\(D_{\text {T}}\)

Thermophoresis diffusion coefficient

\(D_{\text {B}}\)

Brownian diffusion coefficient

h

Thin-film thickness

\(q_{\text {rad}}\)

Radiative heat flux

\(F^{\prime }\)

Dimensionless radial velocity

G

Dimensionless azimuthal velocity

F

Dimensionless axial velocity

\(\theta\)

Dimensionless temperature

\(\phi\)

Dimensionless concentration

Pr

Prandtl number

Re

Local Reynolds number

S

Unsteadiness parameter

\(\omega\)

Rotation parameter

M

Magnetic parameter

\(\beta _{1}\)

Deborah number

\(\beta\)

Dimensionless film thickness

Rd

Radiation parameter

\(\theta _{\text {w}}\)

Temperature ratio parameter

Ec

Eckert number

\(N_{\text {t}}\)

Thermophoresis parameter

\(N_{\text {b}}\)

Brownian motion parameter

Sc

Schmidt number

\(\sigma ^{**}\)

Reaction rate parameter

n

Fitted rate constant

E

Activation energy parameter

\(\delta\)

Temperature difference parameter

\(Nu_{\text {r}}\)

Local Nusselt number

\(Sh_{\text {r}}\)

Local Sherwood number

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A.C. Emslie, F.D. Bonner, L.G. Peck, Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29, 858–862 (1958)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    B.G. Washo, Rheology and modeling of the spin coating process. IBM J. Res. Dev. 21, 190–198 (1977)CrossRefGoogle Scholar
  3. 3.
    S.A. Jenekhe, Effects of solvent mass transfer on flow of polymer solutions on a flat rotating disk. Ind. Eng. Chem. Fundam. 23, 425–432 (1984)CrossRefGoogle Scholar
  4. 4.
    W.W. Flack, D.S. Soong, A.T. Bell, D.W. Hess, A mathematical model for spin coating of polymer resists. J. Appl. Phys. 56, 1199 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    C.Y. Wang, L.T. Watson, K.A. Alexander, Spinning of a liquid film from an accelerating disc. IMA J. Appl. Math. 46, 201–210 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    H.I. Andersson, B. Holmedal, B.S. Dandapat, A.S. Gupta, Magnetohydrodynamic melting flow from a horizontal rotating disk. Math. Models Methods Appl. Sci. 3, 373–393 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Kumari, G. Nath, Unsteady MHD film flow over a rotating infinite disk. Int. J. Eng. Sci. 42, 1099–1117 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    B.S. Dandapat, S. Maity, S.K. Singh, Two-layer film flow on a rough rotating disk in the presence of air shear. Acta Mech. 228, 4055–4065 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Hassanpour, H. Safardoust, D. Ghanbari, M. Salavati-Niasari, Microwave synthesis of CuO/NiO magnetic nanocomposites and its application in photo-degradation of methyl orange. J. Mater. Sci. Mater. Electr. 27, 2718–2727 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Rapid and eco-friendly synthesis of NiO/ZnO nanocomposite and its application in decolorization of dye. J. Mater. Sci. Mater. Electr. 28, 10830–10837 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Hassanpour, M. Salavati-Niasari, S.A. Mousavi, H. Safardoust-Hojaghan, M. Hamadanian, CeO\(_{2}\) /ZnO Ceramic nanocomposites, synthesized via microwave method and used for decolorization of dye. J. Nanostr. 8, 97–106 (2018)Google Scholar
  12. 12.
    P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal transport. Mater. Today 8, 36–44 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Salavati-Niasari, P. Salemi, F. Davar, Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N, N\(^{/}\) -bis-( \(\alpha\)-methylsalicylidene)-2,2-dimethylpropane-1, 3-diamine, supported on alumina. J. Mol. Catal. A Chem. 238, 215–222 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorg. Chem. Commun. 8, 174–177 (2005)CrossRefGoogle Scholar
  15. 15.
    F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: Solvent and surfactant effects. Ultras. Sonochem. 20, 354–365 (2013)CrossRefGoogle Scholar
  16. 16.
    G. Kianpour, M. Salavati-Niasari, H. Emadi, Sonochemical synthesis and characterization of NiMoO\(_{4}\) nanorods. Ultras. Sonochem. 20, 418–424 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Trokhmchuk, D. Henderson, A. Nikolov, D.T. Easan, A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17, 4940–4947 (2001)CrossRefGoogle Scholar
  18. 18.
    S. Biswas, S. Gawande, V. Bromberg, Y. Sun, Deposition dynamics of inkjetprinted colloidal drops for printable photovoltaics fabrication. J. Sol. Energy Eng. 132, 021010 (2010)CrossRefGoogle Scholar
  19. 19.
    A.S. Joshi, Y. Sun, Wetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study. Phys. Rev. E 82, 041401 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng. Div. 231, 99–106 (1995)Google Scholar
  21. 21.
    J. Buongiorno, Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)CrossRefGoogle Scholar
  22. 22.
    R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)CrossRefGoogle Scholar
  23. 23.
    A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)CrossRefGoogle Scholar
  24. 24.
    H.F. Oztop, E.A. Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)CrossRefGoogle Scholar
  25. 25.
    Y. Lin, Y. Jiang, Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: A numerical simulation. Int. J. Heat Mass Transf. 123, 569–582 (2018)CrossRefGoogle Scholar
  26. 26.
    A.R. Bestman, Radiative heat transfer to flow of a combustible mixture in a vertical pipe. Int. J. Energy Res. 15, 179–184 (1991)CrossRefGoogle Scholar
  27. 27.
    K.A. Maleque, Unsteady natural convection boundary layer heat and mass transfer flow with exothermic chemical reactions. J. Pure Appl. Math. 9, 17–41 (2013)Google Scholar
  28. 28.
    C. Zhang, L. Zheng, X. Zhang, G. Chen, MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl. Math. Model. 39, 165–181 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    F. Mabood, S. Shateyi, M.M. Rashidi, E. Momoniat, N. Freidoonimehr, MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv. Powder Technol. 27, 742–749 (2016)CrossRefGoogle Scholar
  30. 30.
    A.A. Afify, N.S. Elgazery, Effect of a chemical reaction on magnetohydrodynamic boundary layer flow of a Maxwell fluid over a stretching sheet with nanoparticles. Particuology 29, 154–161 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Mustafa, J.A. Khan, T. Hayat, A. Alsaedi, Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Transf. 108, 1340–1346 (2017)CrossRefGoogle Scholar
  32. 32.
    F.M. Abbasi, S.A. Shahazad, Heat transfer analysis for three-dimensional flow of Maxwell fluid with temperature dependent thermal conductivity: Application of Cattaneo-Christov heat flux model. J. Mol. Liq. 220, 848–854 (2016)CrossRefGoogle Scholar
  33. 33.
    Y. Bai, X. Liu, Y. Zhang, M. Zhang, Stagnation-point heat and mass transfer of MHD Maxwell nanofluids over a stretching surface in the presence of thermophoresis. J. Mol. Liq. 224, 1172–1180 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Khan, J. Ahmed, L. Ahmad, Chemically reactive and radiative von Kármán swirling flow due to a rotating disk. Appl. Math. Mech. -Engl. Ed. 39, 1295–1310 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Khan, J. Ahmed, L. Ahmad, Application of modified Fourier law in von Kármán swirling flow of Maxwell fluid with chemically reactive species. J. Braz. Soc. Mech. Sci. Eng. 40, 573 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Basic SciencesUniversity of Engineering and TechnologyTaxilaPakistan
  3. 3.Department of MathematicsShaheed Benazir Bhutto UniversitySheringal Upper DirPakistan

Personalised recommendations