Applied Physics A

, 125:128 | Cite as

Structure and electrical conductivity of ɤ-irradiated lead–phosphate glass containing MoO3

  • N. A. Elalaily
  • A. H. Zahran
  • O. I. SallamEmail author
  • F. M. Ezz Eldin


Phosphate glasses doped with three different concentrations of MoO3 were prepared using quenching method. The effects of the added molybdenum ions on density, molar volume, specific volume, FTIR spectra and electrical conductivity were measured and discussed. It has been found that density decreased while molar volume and specific volume increased with the increase of Mo content. These data have been related to the lower molecular weight of Mo ions compared with the Pb ions which they replaced, and also to the increase of the free space. Electrical conductivity decreased with the low concentrations of Mo then followed by an increase of the highest content of Mo due to the assumption of combination of ionic conductivity from Na ions and electronic conductivity due to the presence of Mo ions in many valences (Mo3+,Mo4+, Mo5+, Mo6+). Also the effects of low and high γ radiation doses which caused minor changes on the FTIR spectra or electrical conductivity especially for glass containing 3% MoO3 were interpreted. The Eg was found in the range from 2.6 to 4.62 ev which is in the forbidden indirect transition.


  1. 1.
    L. Bih, S. Mohdachi, A. Nadiri, M. Mansouri, M. Amalhay, O. Mykajlo, D. Kayts, Optoelectron. Adv. Mat. Rapid Commun. 2, 253 (2008)Google Scholar
  2. 2.
    S.M. Salem, E.A. Mohamed, J. Non-Cryst. Solids 357, 1153 (2011)ADSGoogle Scholar
  3. 3.
    S.T. Reis, D.L. Faria, J.R. Martinelli, W.M. Pontuschka, D.E. Day, G.S.M. Partiti, J. Non-Cryst. Solids 304, 188 (2002)ADSGoogle Scholar
  4. 4.
    G.N. Greaves, in Glass science and technology, vol. 4, part B, ed. by D.R. Uhlmann, N.J. Kreidl (Elsevier, Amsterdam, 1990), p. 1Google Scholar
  5. 5.
    N.A. Elalaily, R.M. Mahamed, J. Nuclear Mater. 303, 44 (2002)ADSGoogle Scholar
  6. 6.
    H. Behzad, M.H. Hekmatshoar, M. Mirzayi, M. Azmoonfar, Ionics. 15, 647 (2009)Google Scholar
  7. 7.
    N.A. Elalailya, M.I. Magda Khalilb, L.S. Ahmed, Phys. B 390, 236 (2007)ADSGoogle Scholar
  8. 8.
    M. Rada, S. Rada, P. Pascuta, E. Culea, Spectrochim. Acta Part A. 77, 832 (2010)ADSGoogle Scholar
  9. 9.
    D. Ehrt, J. Non-Cryst. Solids 348, 22 (2004)ADSGoogle Scholar
  10. 10.
    Y.B. Saddeek, Phys. B. 406, 562 (2011)ADSGoogle Scholar
  11. 11.
    F.H. El Batal, S.M. Abo-Naf, S.Y. Marzouk, Philos. Mag. 91, 341 (2011)ADSGoogle Scholar
  12. 12.
    V. Dimitrov, Y. Dimitriev, J. Non-Cryst. Solids 122, 133 (1990)ADSGoogle Scholar
  13. 13.
    M.V.N. Padma Rao, L. Srinivasa Rao, M. Srinivasa Reddy, V. Ravi, Kumar, N. Veeraiah, Croat. Chem. Acta 82, 747 (2009)Google Scholar
  14. 14.
    M. Moutataouia, M. Lamire, M. Taibi, Matec Web Conf. 5, 04012 (2013), CrossRefGoogle Scholar
  15. 15.
    M. Celikbilek, A.E. Ersundu, S. Aydin, J. Am. Ceram. Soc. 96, 1470 (2013)Google Scholar
  16. 16.
    L. Abbas, L. Bih, A. Nadiri, Y. El Amraoui, D. Mezzane, B. Elouadi, J. Mol. Struct. 876, 194 (2008)ADSGoogle Scholar
  17. 17.
    M.M. El-Desoky, J. Non-Cryst. Solids 351, 3139 (2005)ADSGoogle Scholar
  18. 18.
    M. Saad, W. Stambouli, N. Sdiri, H. Elhouichet, Mater. Res. Bull. 89, 224 (2017)Google Scholar
  19. 19.
    A.V. Ravi Kumar, Ch.S. Rao, G. Murali Krishna, V. Ravi Kumar, N. Veeraiah, J. Mol. Struct. 1016, 39 (2012)ADSGoogle Scholar
  20. 20.
    R. Berger, J. Kliava, P. Beziade, J. Non-Cryst. Solids 180, 151 (1995)ADSGoogle Scholar
  21. 21.
    A. Agarwal, S. Khasa, V.P. Seth, S. Sanghi, M. Arora, J. Mol. Struct. 1060, 182 (2014)ADSGoogle Scholar
  22. 22.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968)Google Scholar
  23. 23.
    R.N. Sheibani, C.A. Hogarth, J. Mater. Sc. 26, 429 (1991)ADSGoogle Scholar
  24. 24.
    N.F. Mott, E.A. Davis, Electronic process in non-crystalline materials, 2nd edn. (Oxford University Press, Clarendon Press, New York, 1979)Google Scholar
  25. 25.
    K. Terashima, S.H. Kim, T. Yoko, J. Am. Ceram. Soc. 78, 1601 (1995)Google Scholar
  26. 26.
    I. Kashif, S.A. Rahman, A.G. Mostafa, E.M. Ibrahim, A.M. Sanad, J. Alloys Compd. 450, 352 (2008)Google Scholar
  27. 27.
    N. Mouhsine, L. Bih, N. Allali, A. Nadiri, A. Yacoubi, M. Hadded, M. Danot, Solid State Sci. 5, 669 (2003)ADSGoogle Scholar
  28. 28.
    G. Little Flower, G. Sahaya Baskaran, M. Srinivasa Reddy, N. Veeraiah, Phys. B 393, 61 (2007)ADSGoogle Scholar
  29. 29.
    F.H. El Batal, Nucl. Instrum. Methods Phys. Res. B265, 521 (2007)ADSGoogle Scholar
  30. 30.
    B. Sumalatha, I. Omkaram, T.R. Rao, C.L. Raju, J. Mol. Struct. 1006, 96 (2011)ADSGoogle Scholar
  31. 31.
    M. Marzouk, H. ElBatal, W. Eisa, Indian J. Phys. 90, 781 (2015)ADSGoogle Scholar
  32. 32.
    D. Ehrt, P. Ebeling, Glass Technol. 44, 46 (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Elalaily
    • 1
  • A. H. Zahran
    • 1
  • O. I. Sallam
    • 1
    Email author
  • F. M. Ezz Eldin
    • 1
  1. 1.Radiation Chemistry DepartmentNational Center for Radiation Research and Technology, Atomic Energy AuthorityCairoEgypt

Personalised recommendations