Advertisement

Applied Physics A

, 125:119 | Cite as

Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT–BT ceramics

  • Sijian Pang
  • Ling YangEmail author
  • Juyu Qin
  • Hao Qin
  • Hang Xie
  • Hua Wang
  • Changrong Zhou
  • Jiwen XuEmail author
Article
  • 56 Downloads

Abstract

The (Bi0.5Na0.5)0.94Ba0.06Ti(1 − x)(Lu0.5Nb0.5)xO3 (BNBT–xLN, x = 0, 0.02, 0.03, 0.04, 0.05, 0.07) ceramics were designed to investigate their dielectric, ferroelectric, energy storage and electrostriction properties. All ceramics illustrated single pseudo-cubic perovskite structure and densely stacked microstructure. The LN doping disturbed the long-range ordered ferroelectric phase, which was confirmed by the depressed PIE loops and S–E curves. The excellent piezoelectric response was realized in the coexistence region of the ferroelectric polar and weak-polar phases. A significant enhancement of electric field-induced strains (Smax = 0.42%) with a large average normalized strain coefficient (d33* = Smax/Emax) of 602.41 pm/V, electrostriction coefficient (Q33 = 0.0334 m4/C2) was achieved at x = 0.02. And a high energy storage density of 0.72 J/cm3 was obtained at x = 0.03. As a result, the systematic investigations on the BNBT–xLN ceramics can benefit the developments of low electric field piezoelectric and energy storage devices.

Notes

Acknowledgements

This work is supported by the National Nature Science Foundation of China (61741105, 11664006), Guangxi Nature Science Foundation (2017GXNSFDA198024, 2016GXNSFAA380069) and Guangxi Key Laboratory of Information Materials (161001-Z, 171009-Z).

References

  1. 1.
    C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Son, C.W. Ahn, W. Jo, Lead-free piezoceramics -Where to move on? J. Materiomics. 2, 1–24 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics. 4, 13–26 (2018)CrossRefGoogle Scholar
  3. 3.
    Z. Yang, B. Liu, L. Wei, Y. Hou, Structure and electrical properties of (1−x)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81–89 (2008)CrossRefGoogle Scholar
  4. 4.
    W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel, Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J. Appl. Phys. 109, 014110 (2011)CrossRefADSGoogle Scholar
  5. 5.
    X. Lu, J. Xu, L. Yang, C. Zhou, Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping. J. Materiomics. 2, 87–93 (2016)CrossRefGoogle Scholar
  6. 6.
    R. Zuo, C. Ye, X. Fang, J. Li, Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics. J. Eur. Cream. Soc. 28, 871–877 (2008)CrossRefGoogle Scholar
  7. 7.
    Y.J. Dai, S. Zhang, T.R. Shrout, X.W. Zhang, Piezoelectric and ferroelectric properties of Li-doped (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 1108–1113 (2010)CrossRefGoogle Scholar
  8. 8.
    P.Y. Chen, C.S. Chen, C.S. Tu, T.L. Chang, Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics. J. Eur. Cream. Soc. 34, 4223–4233 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Uddin, G.-P. Zheng, Y. Iqbal, R. Ubic, J. Yang, Unification of the negative electrocaloric effect in Bi1/2Na1/2TiO3–BaTiO3 solid solutions by Ba1/2Sr1/2TiO3 doping. J. Appl. Phys. 114, 213519 (2013)CrossRefADSGoogle Scholar
  10. 10.
    J. Anthoniappen, C.S. Tu, P.Y. Chen, C.S. Chen, Y.U. Idzerda, S.J. Chiu, Raman spectra and structural stability in B-site manganese doped (Bi0.5Na0.5)0.925Ba0.075TiO3 relaxor ferroelectric ceramics. J. Eur. Cream. Soc. 35, 3495–3506 (2015)CrossRefGoogle Scholar
  11. 11.
    C.C. Jin, F.F. Wang, L.L. Wei, J. Tang, Y. Li, Q.R. Yao, C.Y. Tian, W.Z. Shi, Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions. J. Alloy. Compd. 585, 185–191 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Zhao, H. Fan, X. Ren, S. Gao, J. Ma, Y. Shi, A novel ((Bi0.5Na0.5)0.94Ba0.06)(1–x)(K0.5Nd0.5)xTiO3 lead-free relaxor ferroelectric ceramic with large electrostrains at wide temperature ranges. Ceram. Int. 44, 571–579 (2018)CrossRefGoogle Scholar
  13. 13.
    B. Hu, H. Fan, L. Ning, Y. Wen, C. Wang, High energy storage performance of [(Bi0.5Na0.5)0.94Ba0.06]0.97La0.03Ti1−x(Al0.5Nb0.5)xO3 ceramics with enhanced dielectric breakdown strength. Ceram. Int. 44, 15160–15166 (2018)CrossRefGoogle Scholar
  14. 14.
    R. Cheng, Y. Duan, R. Chu, J. Hao, J. Du, Z. Xu, G. Li, Investigation of structural and electrical properties of B-site complex ion (Nd1/2Ta1/2)4+-doped Bi1/2Na1/2TiO3 lead-free piezoelectric ceramic. J. Mater. Sci. Mater. El. 26, 5409–5415 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Qiao, X. Li, Z. Wang, C. He, Y. Liu, X. Yang, X. Long, Preparation and characterization of Pb(Lu1/2Nb1/2)O3–Pb(Ni1/3Nb2/3)O3–PbTiO3 ternary ferroelectric ceramics with high piezoelectric constant. Mater. Res. Bull. 102, 122–129 (2018)CrossRefGoogle Scholar
  16. 16.
    R. Ranjan, A. Dviwedi, Structure and dielectric properties of (Na0.50Bi0.50)1−x BaxTiO3: 0 ≤ x ≤ 0.10. Solid State Commun. 135, 394–399 (2005)CrossRefADSGoogle Scholar
  17. 17.
    S. Prasertpalichat, W. Schmidt, D.P. Cann, Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. J. Adv. Dielectr. 06, 1650012 (2016)CrossRefADSGoogle Scholar
  18. 18.
    A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics. Mater. Chem. Phys. 143, 1282–1288 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Shi, H. Fan, X. Liu, Y. Ma, Q. Li, Bi deficiencies induced high permittivity in lead-free BNBT-BST high-temperature dielectrics. J. Alloy. Compd. 627, 463–467 (2015)CrossRefGoogle Scholar
  20. 20.
    S.T. Zhang, B. Yang, W. Cao, The temperature-dependent electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5K0.5TiO3 near the morphotropic phase boundary. Acta. Mater. 60, 469–475 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Jin, F. Li, S. Zhang, D.J. Green, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Luo, H. Dong, D. Wang, K. Jin, Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3–CaZrO3 lead-free thin films. J. Am. Ceram. Soc. 101, 3460–3467 (2018)CrossRefGoogle Scholar
  23. 23.
    F. Weyland, H. Zhang, N. Novak, Enhancement of energy storage performance by criticality in lead-free relaxor ferroelectrics. Phys. Status. Solidi. R. 12, 1800165 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Mahajan, H. Zhang, J. Wu, E.V. Ramana, M.J. Reece, H. Yan, Effect of phase transitions on thermal depoling in lead-free 0.94(Bi0.5Na0.5TiO3)–0.06(BaTiO3) based piezoelectrics. J. Phys. Chem. C 121, 5709–5718 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Jin, W. Luo, L. Wang, Y. Tian, Q. Hu, L. Hou, L. Zhang, X. Lu, H. Du, X. Wei, G. Liu, Y. Yan, High thermal stability of electric field-induced strain in (1 − x)(Bi0.5Na0.5)TiO3xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics. J. Eur. Cream. Soc. 39, 277–286 (2019)CrossRefGoogle Scholar
  26. 26.
    G. Viola, R. Mkinnon, V. Koval, A. Adomkevicius, S. Dunn, H. Yan, Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J. Phys. Chem. C 118, 8564–8570 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Ma, H. Guo, S.P. Beckman, X. Tan, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics. Phys. Rev. Lett. 109, 107602 (2012)CrossRefADSGoogle Scholar
  28. 28.
    J. Wu, A. Mahajan, L. Riekehr, H. Zhang, B. Yang, N. Meng, Z. Zhang, H. Yan, Perovskite Srx(Bi1−xNa0.97xLi0.03)0.5TiO3 ceramics with polar nanoregions for high power energy storage. Nano. Energy. 50, 723–732 (2018)CrossRefGoogle Scholar
  29. 29.
    F. Li, L. Jin, Z. Xu, S. Zhang, Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014)CrossRefADSGoogle Scholar
  30. 30.
    C.H. Lee, H.S. Han, T.A. Duong, T.H. Dinh, C.W. Ahn, J.S. Lee, Stabilization of the relaxor phase by adding CuO in lead-free (Bi1/2Na1/2)TiO3–SrTiO3–BiFeO3 ceramics. Ceram. Int. 43, 1071–11077 (2017)Google Scholar
  31. 31.
    X. Zhang, G. Jiang, D. Liu, B. Yang, W. Cao, Enhanced electric field induced strain in (1−x)((Bi0.5Na0.5)TiO3–Ba(Ti, Zr)O3)–xSrTiO3 ceramics. Ceram. Int. 44, 12869–12876 (2018)CrossRefGoogle Scholar
  32. 32.
    X. Liu, X. Tan, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28, 574–578 (2016)CrossRefADSGoogle Scholar
  33. 33.
    L. Jin, R. Huo, R. Guo, F. Li, D. Wang, Y. Tian, Q. Hu, X. Wei, Z. He, Y. Yan, G. Liu, Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe(3+)-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS. Appl. Mater. Interfaces. 8, 31109–31119 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Ang, Z. Yu, High, Purely electrostrictive strain in lead-free dielectrics. Adv. Mater. 18, 103–106 (2006)CrossRefGoogle Scholar
  35. 35.
    S.-T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21, 4716–4720 (2009)CrossRefGoogle Scholar
  36. 36.
    W. Bai, D. Chen, P. Zheng, J. Xi, Y. Zhou, B. Shen, J. Zhai, Z. Ji, NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in < 00l> grain oriented lead-free BNT-based piezoelectric materials. J. Eur. Cream. Soc. 37, 2591–2604 (2017).CrossRefGoogle Scholar
  37. 37.
    M. Cernea, C. Galassi, B.S. Vasile, C. Capiani, C. Berbecaru, I. Pintilie, L. Pintilie, Structural, dielectric, and piezoelectric properties of fine-grained NBT-BT0.11 ceramic derived from gel precursor. J. Eur. Cream. Soc. 32, 2389–2397 (2012)CrossRefGoogle Scholar
  38. 38.
    S. Anem, K.S. Rao, K.H. Rao, Investigation of lanthanum substitution in lead-free BNBT ceramics for transducer applications. Ceram. Int. 42, 15319–15326 (2016)CrossRefGoogle Scholar
  39. 39.
    J. Li, F. Wang, C.M. Leung, S.W. Or, Y. Tang, X. Chen, T. Wang, X. Qin, W. Shi, Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics. J. Mater. Sci. 46, 5702–5708 (2011)CrossRefADSGoogle Scholar
  40. 40.
    L. Liu, D. Shi, Y. Huang, S. Wu, X. Chen, L. Fang, C. Hu, Quantitative description of the diffuse phase transition of BNT-NKN Ceramics. Ferroelectrics. 432, 65–72 (2012)CrossRefGoogle Scholar
  41. 41.
    S. Prasertpalichat, B. Phongthipphithak, N. Kumar, D.P. Cann, T. Bongkarn, Impedance spectroscopy study of Bi0.5(Na0.74K0.16Li0.10)0.5TiO3–Ba(Zr0.05Ti0.95)O3 ceramics prepared via combustion technique. Ceram. Int. 43, S145–S150 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Praharaj, D. Rout, S. Anwar, V. Subramanian, Polar nanoregions in lead-free (Na0.5Bi0.5)TiO3–SrTiO3–BaTiO3 relaxors: an impedance spectroscopic study. J. Alloy. Compd. 706, 502–510 (2017)CrossRefGoogle Scholar
  43. 43.
    N. Thongyong, W. Tuichai, N. Chanlek, P. Thongbai, Effect of Zn2+ and Nb5+ co-doping ions on giant dielectric properties of rutile-TiO2 ceramics. Ceram. Int. 43, 15466–15471 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Zang, M. Li, D.C. Sinclair, T. Frömling, W. Jo, J. Rödel, D. Johnson, Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 based high-temperature dielectrics. J. Am. Ceram. Soc. 97, 2825–2831 (2014)CrossRefGoogle Scholar
  45. 45.
    Y. Xia, Z. Liu, Y. Wang, L. Shi, L. Chen, J. Yin, X. Meng, Conduction behavior change responsible for the resistive switching as investigated by complex impedance spectroscopy. Appl. Phys. Lett. 91, 102904 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations