Applied Physics A

, 125:118 | Cite as

Rutile TiO2 nanorod arrays incorporated with α-alumina for high efficiency dye sensitized solar cells

  • N. Sriharan
  • T. S. SenthilEmail author
  • Misook KangEmail author
  • N. M. Ganesan


Rutile TiO2 nanorod arrays (TNAs) incorporating with α-alumina (α-Al2O3) thin film have been fabricated on the fluorine-doped tin oxide (FTO) by a modest and flexible doctor-blade technique-based hydrothermal method. The crystallinity of α-Al2O3 on TNAs and morphological control of the photo-anodes were characterized by X-ray diffraction (XRD), UV–Vis spectrophotometry, field emission scanning electron microscopy (FESEM), energy-dispersive spectrometric (EDS) and high-resolution transmission electron microscopy (HRTEM). The growth of α-Al2O3 crystals is influenced by aluminium seed concentrations. The growth mechanism of different morphological TNAs due to the incorporation of α-Al2O3 was discussed in detail. It has also demonstrated to the application of dye sensitized solar cells. Dye-sensitized solar cells (DSSCs) prepared with 3% α-Al2O3 incorporated TNAs shows an improved short-circuit current density of 15.23 mA cm−2, open-circuit photo voltage of 0.68 V, fill factor of 0.63 and a power conversion efficiency of 6.5%.



This work was supported by grant no. 34/14/49/2014-BRNS with ATC from the Board of Research in Nuclear Sciences (BRNS) innovation major project proposal of the Department of Atomic Energy (DAE), Government of India.


  1. 1.
    S.S. Mao, X. Chen, Selected nanotechnologies for renewable energy applications. Int. J. Energy. Res. 31(6–7), 619–636 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo, Recent developments titanium oxide-based photocatalysts. Appl. Catal. A. Gen. 325, 1–14 (2007)CrossRefGoogle Scholar
  3. 3.
    B. O’Regan, M. Gratzel, Nature. (1991), 353, 737Google Scholar
  4. 4.
    M. Gratzel, Acc. Chem. Res. (2009), 42, 1788Google Scholar
  5. 5.
    Y.T. Kim, J. Park, S. Kim, D.W. Park, J. Choi, Electrochim. Acta. 78, 417 (2012)CrossRefGoogle Scholar
  6. 6.
    C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Appl. Phys. Lett. 90, 263501 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    T.S. Senthil, A.Y. Kim, N. Muthukumarasamy, M. Kang, J. Nanopart. Res. 15, 1926 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    T. Ling, J.G. Song, X.Y. Chen, J. Yang, S.Z. Qiao, X.W. Du, J. Alloys. Compd. 546, 307–313 (2013)CrossRefGoogle Scholar
  10. 10.
    J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, J. Am. Chem. Soc. 130, 13364–13372 (2008)CrossRefGoogle Scholar
  11. 11.
    S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, Nano. Lett. 11, 666 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    D. Miaoqiang Lv, M. Zheng, L. Ye, J. Sun, W. Xiao, C. Guo, Lin, Nanoscale. 4, 5872–5879 (2012)CrossRefGoogle Scholar
  13. 13.
    J.J. Wu, C.C. Yu, J. Phys. Chem. B 108, 3377–3379 (2004)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, H. Wang, Y. Wang, H. Xu, M. Li, H. Shen, Chem. Commun. 47, 3790–3792 (2011)CrossRefGoogle Scholar
  15. 15.
    X.J. Feng, J. Zhai, L. Jiang, Angew. Chem. 44, 5115–5118 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Fujihara, E. Hosono, K. Kakiuchi, H. Imai, J. Am. Chem. Soc. 126, 7790–7791 (2004)CrossRefGoogle Scholar
  17. 17.
    X.J. Feng, K. Shankar, M. Paulose, C.A. Grimes, Angew. Chem. 48, 8095–8098 (2009)CrossRefGoogle Scholar
  18. 18.
    P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, Nanoscale. 2, 45–59 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Shanmugam, M.F. Baroughi, D. Galipeau, Thin. Solid. Films. 518, 2678 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A. Zaban, S.G. Chen, S. Chappel, B.A. Gregg, Chem. Commun. 0(22), 2231–2232 (2000)Google Scholar
  21. 21.
    S. Wu, H. Han, Q. Tai, J. Zhang, S. Xu, C. Zhou, Y. Yang, H. Hu, B. Chen, X.Z. Zhao, J. Power. Sour. 182, 119 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M. Grätzel, Nature. 414, 338–344 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    H. Krebs, Fundamentals of Inorganic Crystal Chemistry (McGraw-Hill, London, 1968), p. 242Google Scholar
  24. 24.
    H. Liu, G. Ning, Z. Gan, Y. Lin, A simple procedure to prepare spherical α-alumina powders. Mater. Res. Bull. 44, 785–788 (2009)CrossRefGoogle Scholar
  25. 25.
    Y. Akila, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, T.S. Senthil, Senthilarasu sundaram, natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells. J. Photochem. Photobiol. B 148, 223–231 (2015)CrossRefGoogle Scholar
  26. 26.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, 1978)Google Scholar
  27. 27.
    M. Okuya, S. Kaneko, K. Hiroshima, I. Yagi, K. Murakami, J. Eur. Ceram. Soc. 21, 2099 (2001)CrossRefGoogle Scholar
  28. 28.
    S. Rühle, D. Cahen, J. Phys. Chem. B 108, 17946 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, J. Am. Chem. Soc. 125, 475 (2003)CrossRefGoogle Scholar
  31. 31.
    D. Kuang, S. Ito, B. Wenger, C. Klein, J.E. Moser, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc. 128, 4146 (2006)CrossRefGoogle Scholar
  32. 32.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano. Lett. 6, 215 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    N.N. Bwana, J. Nanopart. Res. 11, 1905 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpry-baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)CrossRefGoogle Scholar
  35. 35.
    H. Alarcón, M. Hedlund, E.M.J. Johansson, H. Rensmo, A. Hagfeldt, J. Phys. Chem. C 111, 13267 (2007)CrossRefGoogle Scholar
  36. 36.
    W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, Z.L. Wang, J. Am. Chem. Soc. 134, 4437–4441 (2012)CrossRefGoogle Scholar
  37. 37.
    B. Liu, S. Eray, Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRefGoogle Scholar
  38. 38.
    P.P. Sun, X.T. Zhang, X.P. Liu, L.L. Wang, C.H. Wang, J.K. Yang, Y.C. Liu, J. Mater.Chem. 22, 6389–6393 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Zhun, L. Chen, H. Gong, M. Zi, B. Cao, A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells. Ceram. Int. 40, 2337–2342 (2014)CrossRefGoogle Scholar
  40. 40.
    X.T. Zhang, H. Liu, T. Taguchi, Q.B. Meng, O. Sato, A. Fujishima, Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films. Sol. Energy. Mater. Sol. Cells. 81, 197–203 (2004)CrossRefGoogle Scholar
  41. 41.
    K.H. Park, M. Dhayal, Simultaneous growth of rutile TiO2 as 1D/3D nanorod/nanoflower on FTO in one-step process enhances electrochemical response of photoanode in DSSC. Electrochem. Commun. 49, 47–50 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Department of PhysicsErode Sengunthar Engineering CollegeErodeIndia
  2. 2.Department of Chemistry, College of Natural SciencesYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations