Applied Physics A

, 125:113 | Cite as

Multiferroic (Nd,Fe)-doped PbTiO3 thin films obtained by pulsed laser deposition

  • M. Dumitru-Grivei
  • V. Ion
  • R. Birjega
  • A. Moldovan
  • F. CraciunEmail author
  • M. Cernea
  • C. Galassi
  • M. DinescuEmail author


We report the successful growth of multiferroic (Nd,Fe)-doped PbTiO3 thin films with the composition (Pb0.88Nd0.08)(Ti0.93Fe0.05Mn0.02)O3 (PNFT) using pulsed laser deposition. The deposited films have been investigated by XRD, SEM, energy-dispersive X-ray spectroscopy (EDS), secondary-ion mass spectroscopy (SIMS), atomic force microscopy, magnetic force microscopy, piezoforce microscopy, spectroscopic ellipsometry (SE) and dielectric spectroscopy measurements. PNFT films deposited on different substrates (MgO, SrTiO3 and Nb:SrTiO3) are (001) oriented, preserving the orientation of the single-crystal substrates. EDS mapping and SIMS across the film thickness probed the uniform distribution of all the elements. The refractive index and extinction coefficient have been obtained with the SE software package and refined with an optical-graded model. Magnetic domains and ferroelectric domains have been evidenced at microscopic scale. Good dielectric properties and low loss, comparable to those of bulk materials, have been obtained.



Financial support from Joint Project CNR, Romanian Academy “Study and Development of Single-Phase Multiferroic Perovskite Ceramic and Thin Films for Multifunctional Devices” is gratefully acknowledged.


  1. 1.
    N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Dong, J.-M. Liu, S.-W. Cheong, Z. Ren, Multiferroic materials: symmetry, entanglement, excitation, and topology, Adv. Phys. 64, 519–626 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, P.H. Ghosez, Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat. Comm 6, 6677 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    T. Jia, Z. Cheng, H. Zhao, H. Kimura, Domain switching in single-phase multiferroics. Appl. Phys. Rev. 5, 021102 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    D.M. Evans, M. Alexe, A. Schilling, A. Kumar, D. Sanchez, N. Ortega, R.S. Katiyar, J.F. Scott, J. Marty Gregg, The nature of magnetoelectric coupling in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3. Adv. Mater. 27, 6068–6073 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Fusil, V. Garcia, A. Barthélémy, M. Bibes, Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44, 91–116 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Larregola, J.C. Pedregosa, M. Alguero, R. Jimenez, M. Garcia-Hernandez, M.T. Fernandez-Diaz, J.A. Alonso, Novel near-room-temperature type I multiferroic: Pb(Fe0.5Ti0.25W0.25)O3 with coexistence of ferroelectricity and weak ferromagnetism. Chem. Mater. 24, 2664–2672 (2012)CrossRefGoogle Scholar
  8. 8.
    W. Peng, N. Lemée, J.-L. Dellis, V.V. Shvartsman, P. Borisov, W. Kleemann, Z. Trontelj, J. Holc, M. Kosec, R. Blinc, M.G. Karkut, Epitaxial growth and magnetoelectric relaxor behavior in multiferroic 0.8Pb(Fe1/2Nb1/2)O3-0.2Pb(Mg1/2W1/2)O3 thin films. Appl. Phys. Lett. 95, 132501–132507 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar, Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron-tantalate-lead zirconate titanate (PFT/PZT). AIP Adv. 1, 042161–042169 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Kumar, G.L. Sharma, R.S. Katiyar, R. Pirc, R. Blinc, J.F. Scott, Magnetic control of large room-temperature polarization. J. Phys.Condens. Matter 21, 382201–382204 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Kumar, R.S. Katiyar, J.F. Scott, Fabrication and characterization of the multiferroic birelaxor lead-iron-tungstate/lead-zirconate-titanate. J. Appl. Phys. 108, 064101–064105 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Levstik, V. Bobnar, C. Filipic, J. Holc, M. Kosec, R. Blinc, Z. Trontelj, Z. Jaglicic, Magnetoelectric relaxor. Appl. Phys. Lett. 91, 012901–012905 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  14. 14.
    C.-H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953 (2012)CrossRefGoogle Scholar
  15. 15.
    N.D. Scarisoreanu, F. Craciun, R. Birjega, V. Ion, V.S. Teodorescu, C. Ghica, R. Negrea, M. Dinescu, Joining chemical pressure and epitaxial strain to yield Y-doped BiFeO3 thin films with high dielectric response. Sci. Rep. 6, 25531–25535 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    F. Craciun, E. Dimitriu, M. Grigoras, N. Lupu, Multiferroic perovskite (Pb0.845Sm0.08Fe0.035)(Ti0.98Mn0.02)O3 with ferroelectric and weak ferromagnetic properties. Appl. Phys. Lett. 102, 242901–242903 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    F. Craciun, E. Dimitriu, M. Grigoras, N. Lupu, B.S. Vasile, M. Cernea, The emergence of magnetic properties in (Pb0.845Sm0.08Fe0.035)(Ti0.98Mn0.02)O3 and (Pb0.88Nd0.08) (Ti0.98Mn0.02)O3 perovskite ceramics. J. Appl. Phys. 116, 074101–074101 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    F. Craciun, M. Cernea, V. Fruth, M. Zaharescu, I. Atkinson, N. Stanica, L.C. Tanase, L. Diamandescu, A. Iuga, C. Galassi, Novel multiferroic (Pb1 – 3x/2Ndx)(Ti0.98–yFeyMn0.02)O3 ceramics with coexisting ferroelectricity and ferromagnetism at ambient temperature. Mater. Des. 110, 693–704 (2016)CrossRefGoogle Scholar
  19. 19.
    D. Sando, A. Barthelemy, M. Bibes, BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter. 26, 473201 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    K. Shimamoto, Y.W. Windsor, Y. Hu, M. Ramakrishnan, A. Alberca, E.M. Bothschafter, L. Rettig, Th Lippert, U. Staub, C.W. Schneider, Multiferroic properties of uniaxially compressed orthorhombic HoMnO3 thin films. Appl. Phys. Lett. 108, 112904 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    T. Hajlaoui, L. Corbellini, C. Harnagea, M. Josse, A. Pignolet, Enhanced ferroelectric properties in multiferroic epitaxial Ba2EuFeNb4O15 thin films grown by pulsed laser deposition. Mater. Res. Bull. 87, 186–192 (2017)CrossRefGoogle Scholar
  22. 22.
    T. Hajlaoui, C. Harnagea, A. Pignolet, Influence of lanthanide ions on multiferroic properties of Ba2LnFeNb4O15 (Ln = Eu3+, Sm3 + and Nd3+) thin films grown on silicon by pulsed laser deposition. Mater. Lett. 198, 136–139 (2017)CrossRefGoogle Scholar
  23. 23.
    F. Craciun, F. Cordero, B.S. Vasile, V. Fruth, M. Zaharescu, I. Atkinson, R. Trusca, L. Diamandescu, L.C. Tanase, P. Galizia, M. Cernea, C. Galassi, Combined use of Mössbauer spectroscopy, XPS, HRTEM, dielectric and anelastic spectroscopy for estimating incipient phase separation in lead titanate-based multiferroics. Phys. Chem. Chem. Phys. 20, 14652–14663 (2018)CrossRefGoogle Scholar
  24. 24.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plasma and Radiation PhysicsNational Institute for LaserMagureleRomania
  2. 2.Istituto di Struttura della Materia-CNR (ISM-CNR), Area di Ricerca di Roma-Tor VergataRomeItaly
  3. 3.National Institute of Materials PhysicsBucharest-MagureleRomania
  4. 4.CNR-ISTEC, Istituto di Scienza e Tecnologia dei Materiali CeramiciFaenzaItaly

Personalised recommendations