Advertisement

Applied Physics A

, 125:102 | Cite as

Peritectic solidification mechanism and accompanying microhardness enhancement of rapidly quenched Ni–Zr alloys

  • Y. F. Si
  • H. P. WangEmail author
  • P. Lü
  • B. Wei
Article
  • 79 Downloads

Abstract

Hypoperitectic, peritectic, and hyperperitectic Ni–Zr alloys were rapidly solidified by melt spinning technique. The effect of cooling rate on their phase selection and microhardness was investigated. When the cooling rate reaches 1.0 × 107 K/s, the growth of primary Ni7Zr2 and interdendritic eutectic ((Ni) + Ni5Zr) phases during the solidification of peritectic Ni-16.7 at.% Zr alloy melt is inhibited, and complete peritectic Ni5Zr phase forms. The formation ability of complete peritectic Ni5Zr phase of hypoperitectic Ni-16 at.% Zr alloy is considerably higher than that of peritectic Ni-16.7 at.% Zr alloy. With the increase of cooling rate, the competitive growth of the primary Ni7Zr2 phase and the peritectic Ni5Zr phase occurs in the hyperperitectic Ni-20 at.% Zr alloy. The microstructure of primary Ni7Zr2 phase evolves from coarse dendrite to island banding. Furthermore, the microhardness of Ni–Zr peritectic type alloys is enhanced with the rise of cooling rate. In the case of peritectic Ni-16.7 at.% Zr alloy, this increases from 3.98 to 7.01 GPa, realizing an enhancement of 76.8%.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant nos. 51734008, 51327901, 51522102, and 51474175). We would like to thank Ms. W. Liu and Mr. X. Cai for their help in the experiments, and Mr. B. Zhai and Mr. M. X. Li for his inspiring discussion.

References

  1. 1.
    Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Super plastic bulk metallic glasses at room temperature. Science 315, 1385–1388 (2007).  https://doi.org/10.1126/science.1136726 ADSCrossRefGoogle Scholar
  2. 2.
    M. Ghidelli, H. Idrissi, S. Gravier, J.-J. Blandin, J.-P. Raskin, D. Schryvers, T. Pardoen, Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films. Acta Mater. 131, 246–259 (2017).  https://doi.org/10.1016/j.actamat.2017.03.072 CrossRefGoogle Scholar
  3. 3.
    D.D. Qu, K.D. Liss, Y.J. Sun, M. Reid, J.D. Almer, K. Yan, Y.B. Wang, X.Z. Liao, J. Shen, Structural origins for the high plasticity of a Zr–Cu–Ni–Al bulk metallic glass. Acta Mater. 61, 321–330 (2013).  https://doi.org/10.1016/j.actamat.2012.09.062 CrossRefGoogle Scholar
  4. 4.
    Y. Zhao, I.-C. Choi, M.-Y. Seok, U. Ramamurty, J.-Y. Suh, J. Jang, Hydrogen-induced hardening and softening of Ni–Nb–Zr amorphous alloys: dependence on the Zr content. Scr. Mater. 93, 56–59 (2014).  https://doi.org/10.1016/j.scriptamat.2014.08.029 CrossRefGoogle Scholar
  5. 5.
    Y.B. Wang, H.F. Li, Y.F. Zheng, S.C. Wei, M. Li, Correlation between corrosion performance and surface wettability in ZrTiCuNiBe bulk metallic glasses. Appl. Phys. Lett. 96, 251909 (2010).  https://doi.org/10.1063/1.3429591 ADSCrossRefGoogle Scholar
  6. 6.
    S. Wei, F. Yang, J. Bednarcik, I. Kaban, O. Shuleshova, A. Meyer, R. Busch, Liquid–liquid transition in a strong bulk metallic glass-forming liquid. Nat. Commun. 4, 2083 (2013).  https://doi.org/10.1038/ncomms3083 ADSCrossRefGoogle Scholar
  7. 7.
    S.W. Basuki, A. Bartsch, F. Yang, K. Ratzke, A. Meyer, F. Faupel, Decoupling of component diffusion in a glass-forming Zr46.75Ti8.25Cu7.5Ni10Be27.5 melt far above the liquidus temperature. Phys. Rev. Lett. 113, 165901 (2014).  https://doi.org/10.1103/PhysRevLett.113.165901 ADSCrossRefGoogle Scholar
  8. 8.
    M. Ghidelli, S. Gravier, J.J. Blandin, P. Djemia, F. Mompiou, G. Abadias, J.P. Raskin, Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 90, 232–241 (2015).  https://doi.org/10.1016/j.actamat.2015.02.038 CrossRefGoogle Scholar
  9. 9.
    Y. Wang, J. Wang, C. Li, Effect of La addition on glass-forming ability and stability of mechanically alloyed Zr–Ni amorphous alloys. Mater. Sci. Eng. A 528, 1623–1627 (2011).  https://doi.org/10.1016/j.msea.2010.10.092 CrossRefGoogle Scholar
  10. 10.
    J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 9, 619–623 (2010).  https://doi.org/10.1038/nmat2802 ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Park, T.E. Kim, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, J. Eckert, High strength Ni–Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 93, 031913 (2008).  https://doi.org/10.1063/1.2952755 ADSCrossRefGoogle Scholar
  12. 12.
    P. Lü, K. Zhou, H.P. Wang, Evidence for the transition from primary to peritectic phase growth during solidification of undercooled Ni–Zr alloy levitated by electromagnetic field. Sci. Rep. 6, 39042 (2016).  https://doi.org/10.1038/srep39042 ADSCrossRefGoogle Scholar
  13. 13.
    P. Lü, H.P. Wang, Observation of the transition from primary dendrites to coupled growth induced by undercooling within Ni–Zr hyperperitectic alloy. Scr. Mater. 137, 31–35 (2017).  https://doi.org/10.1016/j.scriptamat.2017.05.006 ADSCrossRefGoogle Scholar
  14. 14.
    C.R. Clopet, R.F. Cochrane, A.M. Mullis, Spasmodic growth during the rapid solidification of undercooled Ag–Cu eutectic melts. Appl. Phys. Lett. 102, 031906 (2013).  https://doi.org/10.1063/1.4775670 ADSCrossRefGoogle Scholar
  15. 15.
    H.P. Wang, C.H. Zheng, P.F. Zou, S.J. Yang, L. Hu, B. Wei, Density determination and simulation of Inconel 718 alloy at normal and metastable liquid states. J. Mater. Sci. Technol. 34, 436–439 (2018).  https://doi.org/10.1016/j.jmst.2017.10.014 CrossRefGoogle Scholar
  16. 16.
    Q. Wang, R.R. Chen, X. Gong, J.J. Guo, Y.Q. Su, H.S. Ding, H.Z. Fu, Microstructure, mechanical properties, and crack propagation behavior in high-Nb TiAl alloys by directional solidification. Metall. Mater. Trans. A 49, 4555–4564 (2018).  https://doi.org/10.1007/s11661-018-4765-2 CrossRefGoogle Scholar
  17. 17.
    H.P. Wang, M.X. Li, P.F. Zou, X. Cai, L. Hu, B. Wei, Experimental modulation and theoretical simulation of zonal oscillation for electrostatically levitated metallic droplets at high temperatures. Phys. Rev. E 98, 063106 (2018).  https://doi.org/10.1103/PhysRevE.98.063106 ADSCrossRefGoogle Scholar
  18. 18.
    J. Wu, Y.C. Liu, C. Li, X.C. Xia, Y.T. Wu, H.J. Li, H.P. Wang, Microstructural characterization and phase separation sequences during solidification of Ni3Al-based superalloy. Acta Metall. Sin. 30, 949–956 (2017).  https://doi.org/10.1007/s40195-017-0634-z CrossRefGoogle Scholar
  19. 19.
    Z. Huang, F. Zu, J. Chen, G. Ding, The dependence of phase selection in peritectic solidification of Bi–Te40 on cooling rates and liquid states. Intermetallics 18, 749–755 (2010).  https://doi.org/10.1016/j.intermet.2009.11.017 CrossRefGoogle Scholar
  20. 20.
    C. Kenel, C. Leinenbach, Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys. J. Alloys Compd. 637, 242–247 (2015).  https://doi.org/10.1016/j.jallcom.2015.03.016 CrossRefGoogle Scholar
  21. 21.
    X. Li, T. Ivas, A.B. Spierings, K. Wegener, C. Leinenbach, Phase and microstructure formation in rapidly solidified Cu–Sn and Cu–Sn–Ti alloys. J. Alloys Compd. 735, 1374–1382 (2017).  https://doi.org/10.1016/j.jallcom.2017.11.237 CrossRefGoogle Scholar
  22. 22.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, vol. 3 (1990), p. 1249Google Scholar
  23. 23.
    M. Krivilyov, T. Volkmann, J. Gao, J. Fransaer, Multiscale analysis of the effect of competitive nucleation on phase selection in rapid solidification of rare-earth ternary magnetic materials. Acta Mater. 60, 112–122 (2012).  https://doi.org/10.1016/j.actamat.2011.09.009 CrossRefGoogle Scholar
  24. 24.
    M.X. Li, H.P. Wang, N. Yan, B. Wei, Heat transfer of micro-droplet during free fall in drop tube. Sci. China Technol. Sci. (2018).  https://doi.org/10.1007/s11431-018-9240-x CrossRefGoogle Scholar
  25. 25.
    R.C. Ruhl, Cooling rates in splat cooling. Mater. Sci. Eng. 1, 313–320 (1967).  https://doi.org/10.1007/BF00550702 CrossRefGoogle Scholar
  26. 26.
    S. Yang, W. Tao, Heat Transfer, 3rd edn. (Higher Education Press, Beijing, 1998), pp. 143–148Google Scholar
  27. 27.
    E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, Ch. 14, 7th edn. (1992), pp. 1–43Google Scholar
  28. 28.
    H.W. Kerr, W. Kurz, Solidification of peritectic alloys. Metall. Rev. 41, 129–164 (1996).  https://doi.org/10.1179/imr.1996.41.4.129 CrossRefGoogle Scholar
  29. 29.
    T.S. Lo, S. Dobler, M. Plapp, A. Karma, W. Kurz, Two-phase microstructure selection in peritectic solidification: from island banding to coupled growth. Acta Mater. 51, 599–611 (2003).  https://doi.org/10.1016/s1359-6454(02)00440-8 CrossRefGoogle Scholar
  30. 30.
    S. Dobler, T.S. Lo, M. Plapp, A. Karma, W. Kurz, Peritectic coupled growth. Acta Mater. 52, 2795–2808 (2004).  https://doi.org/10.1016/j.actamat.2004.02.026 CrossRefGoogle Scholar
  31. 31.
    A. Ludwig, J.P. Mogeritsch, T. Pfeifer, In-situ observation of coupled peritectic growth in a binary organic model alloy. Acta Mater. 126, 329–335 (2017).  https://doi.org/10.1016/j.actamat.2016.12.064 CrossRefGoogle Scholar
  32. 32.
    Y.H. Wu, J. Chang, W.L. Wang, B. Wei, Metastable coupled-growth kinetics between primary and peritectic phases of undercooled hypoperitectic Fe54.5Ti45.5 alloy. Appl. Phys. Lett. 109, 154101 (2016).  https://doi.org/10.1063/1.4964740 ADSCrossRefGoogle Scholar
  33. 33.
    K. Yasunaga, H. Watanabe, N. Yoshida, T. Muroga, N. Noda, Correlation between defect structures and hardness in tantalum irradiated by heavy ions. J. Nucl. Mater. 283–287, 179–182 (2000).  https://doi.org/10.1016/S0022-3115(00)00354-8 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations