Applied Physics A

, 125:93 | Cite as

Effects of substitutional doping on structural, electrical, and optical properties of nickel manganite NiMn2O4 films

  • Hongfeng Kong
  • Xiang Li
  • Lixin Xuan
  • Taolue Zhang
  • Zhiqiang Wang
  • Shuwei Zhang
  • Yun HouEmail author


Nickel manganite (NiMn2O4), the most studied material for negative temperature coefficient thermistor applications, doped with one or more metal elements have been fabricated successfully to achieve a better performance. However, the influence of different doping elements on the distribution of manganese ions was rarely reported. We use X-ray photoelectron spectroscopy as an effective tool to study the influence of substitutional doping on the distribution of Mn ions with different oxidation states. NiMn2O4 films, doped with Mg, Zn, Co, and Cu, were systematically prepared on Al2O3 substrates by chemical solution deposition method. The crystalline structure and surface morphology were studied by X-ray diffraction and atomic force microscope. X-ray photoelectron spectroscopy shows that the doping of Mg and Zn makes the ratios of Mn3+/Mn4+ decrease, while Co and Cu make the ratio Mn3+/Mn4+ increase. The resistivity of films is inversely proportional to the concentration of Mn3+–Mn4+ pairs. Investigation of UV–Vis–NIR transmission spectroscopy shows that the band-gap of NiMn2O4 can be adjusted by the substitutional doping. The structural, electrical, and optical properties of nickel manganite NiMn2O4 films can be successfully modified with the partial substitution of Mg, Zn, Co, and Cu for Ni, which is valuable to the applications of negative temperature coefficient thermistors.



This work was supported by National Natural Science Foundation of China (no. 61275111).


  1. 1.
    A. Feteira, Negative temperature coefficient resistance (NTCR), ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92(5), 967–983 (2009)CrossRefGoogle Scholar
  2. 2.
    T. Dinh, H.P. Phan, A. Qamar, P. Woodfield, N.T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. 26(5), 966–986 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Hou, Z. Huang, Y. Gao, Y. Ge, J. Wu, J. Chu, Characterization of Mn1.56Co0.96Ni0.48O4 films for infrared detection. Appl. Phys. Lett. 92(20), 202115 (2008)CrossRefADSGoogle Scholar
  4. 4.
    S. Dorris, T.O. Mason, Electrical properties and cation valencies in Mn3O4. J. Am. Ceram. Soc. 71(5), 379–385 (1988)CrossRefGoogle Scholar
  5. 5.
    M. Schubert, C. Münch, S. Schuurman, V. Poulain, J. Kita, R. Moos, Characterization of nickel manganite NTC thermistor films prepared by aerosol deposition at room temperature. J. Eur. Ceram. Soc. 38(2), 613–619 (2018)CrossRefGoogle Scholar
  6. 6.
    E.G. Larson, R.J. Arnott, D.G. Wickham, Preparation, semiconduction and low-temperature magnetization of the system Ni1–xMn2 +xO4. J. Phys. Chem. Solids 23(12), 1771–1781 (1962)CrossRefADSGoogle Scholar
  7. 7.
    C. Zhao, B. Wang, P. Yang, L. Winnubst, C. Chen, Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics. J. Eur. Ceram. Soc. 28(1), 35–40 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Wang, J. Zhang, Structural and electrical properties of NiMgxMn2–xO4 NTC thermistors prepared by using sol–gel derived powders. Mater. Sci. Eng. B 176(7), 616–619 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Baliga, A.L. Jain, W. Zachofsky, Sputter deposition and characterization of Ni–Mn–O and Ni–Co–Mn–O spinels on polymide and glass substrates. Appl. Phys. A 50(5), 473–477 (1990)CrossRefADSGoogle Scholar
  10. 10.
    R. Schmidt, A. Basu, A.W. Brinkman, Small polaron hopping in spinel manganates. Phys. Rev. B 72(11), 115101 (2005)CrossRefADSGoogle Scholar
  11. 11.
    K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, The effect of Zn on the microstructure and electrical properties of Mn1.17–xNi0.93Co0.9ZnxO4 (0 ≤ x ≤ 0.075) NTC thermistors. J. Alloy. Compd. 467(1–2), 310–316 (2009)CrossRefGoogle Scholar
  12. 12.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(1–2), 751–767 (2015)ADSGoogle Scholar
  13. 13.
    V.A.M. Brabers, F.M.V. Setten, P.S.A. Knapen, X-ray photoelectron spectroscopy study of the cation valencies in nickel manganite. J. Solid State Chem. 49(1), 93–98 (1983)CrossRefADSGoogle Scholar
  14. 14.
    J. Wu, Z. Huang, W. Zhou, C. Ouyang, Y. Hou, Y. Gao, R. Chen, J. Chu, Investigation of cation distribution, electrical, magnetic properties and their correlation in Mn2–xCo2xNi1–xO4 films. J. Appl. Phys. 115(11), 113703 (2014)CrossRefADSGoogle Scholar
  15. 15.
    W. Di, F. Liu, T. Lin, H. Kong, C. Meng, W. Zhang, Y. Chen, Y. Hou, Influence of oxygen partial pressure on structural and electrical properties of Mn1.56Co0.96Ni0.48O4 thin films deposited by pulsed laser deposition. Appl. Surf. Sci. 447, 287–291 (2018)CrossRefADSGoogle Scholar
  16. 16.
    A.J. Nelson, J.G. Reynolds, J.W. Roos, Core-level satellites and outer core-level multiplet splitting in Mn model compounds. J Vac. Sci. Technol. A Vac. Surf. Films 18(4), 1072–1076 (2000)CrossRefADSGoogle Scholar
  17. 17.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011)CrossRefADSGoogle Scholar
  18. 18.
    X. Zhang, W. Ren, W. Kong, Q. Zhou, L. Wang, L. Bian, J. Xu, A. Chang, C. Jiang, Effect of sputtering power on structural, cationic distribution and optical properties of Mn2Zn0.25Ni0.75O4 thin films. Appl. Surf. Sci. 435, 815–821 (2018)CrossRefADSGoogle Scholar
  19. 19.
    H. Nesbitt, D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Miner. 83(3–4), 305–315 (1998)CrossRefADSGoogle Scholar
  20. 20.
    H. Nesbitt, D. Banerjee, XPS study of dissolution of birnessite by humate with constraints on reaction mechanism. Geochim. Cosmochim. Acta 65(11), 1703–1714 (2001)CrossRefADSGoogle Scholar
  21. 21.
    R.D. Dannenberg, A.P. Doctor, S.B. Baliga, Electrical and optical properties of Mn1.56Co0.96Ni0.48O4. In: Infrared Detectors and Focal Plane Arrays V, pp. 158–165 (1998)Google Scholar
  22. 22.
    T. Yokoyama, T. Meguro, Y. Shimada, J. Tatami, K. Komeya, Y. Abe, Preparation and electrical properties of sintered oxides composed of Mn1.5Co(0.25+X)Ni(1.25–X)O4 (0 ≤ X ≤ 0.075) with a cubic spinel structure. J. Mater. Sci. 42(14), 5860–5866 (2007)CrossRefADSGoogle Scholar
  23. 23.
    R. Larson, D. Arnott, Wickham, Preparation, semiconduction and low-temperature magnetization of the system Ni1-xMn2 +xO4. J. Phys. Chem. Solids 23(12), 1771–1781 (1962)CrossRefADSGoogle Scholar
  24. 24.
    V. Brabers, J. Terhell, Electrical conductivity and cation valencies in nickel manganite. Physica Status Solidi (a) 69(1), 325–332 (1982)CrossRefADSGoogle Scholar
  25. 25.
    C.D. Curtis, Applications of the crystal-field theory to the inclusion of trace transition elements in minerals during magmatic differentiation. Geochimica Et Cosmochimica Acta 28(3), 389–403 (1964)CrossRefADSGoogle Scholar
  26. 26.
    T. Yokoyama, Y. Abe, T. Meguro, K. Komeya, K. Kondo, S. Kaneko, T. Sasamoto, Preparation and electrical properties of sintered bodies composed of monophase spinel Mn(2–X)Co2XNi(1–X)O4 (0 ≤ X ≤ 1) derived from rock-salt-type oxides. Jpn. J. Appl. Phys. 35(11), 5775–5780 (1996)CrossRefADSGoogle Scholar
  27. 27.
    R.N. Jadhav, V. Puri, Influence of copper substitution on structural, electrical and dielectric properties of Ni(1–x)CuxMn2O4 (0 ≤ x ≤ 1) ceramics. J. Alloy. Compd. 507(1), 151–156 (2010)CrossRefGoogle Scholar
  28. 28.
    C. Drouet, C. Laberty, J.L.G. Fierro, P. Alphonse, A. Rousset, X-ray photoelectron spectroscopic study of non-stoichiometric nickel and nickel–copper spinel manganites. Int. J. Inorg. Mater. 2(5), 419–426 (2000)CrossRefGoogle Scholar
  29. 29.
    K. Park, J.K. Lee, The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95–xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloy. Compd. 475(1–2), 513–517 (2009)CrossRefGoogle Scholar
  30. 30.
    R. Schmidt, A. Basu, A. Brinkman, Z. Klusek, P. Datta, Electron-hopping modes in NiMn2O4 + δ materials. Appl. Phys. Lett. 86(7), 073501 (2005)CrossRefADSGoogle Scholar
  31. 31.
    Y. Xie, G. Ji, H. Bu, W. Kong, B. Gao, J. Yao, A. Chang, C. Jiang, Effect of oxygen partial pressure and temperature on NTC characteristics of Mn1.56Co0.96Ni0.48O4 thin films grown on SrTiO3 (100) by laser MBE. J. Alloy. Compd. 611, 100–103 (2014)CrossRefGoogle Scholar
  32. 32.
    T.L. Le, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, Microstructural and optical properties of spinel oxide MxCo2-xMnO4 (M = Ni, Zn or Cu; 0 < x < 1) thin films prepared by inorganic polycondensation and dip-coating methods. Thin Solid Films 612, 14–21 (2016)CrossRefADSGoogle Scholar
  33. 33.
    B.C. Mohanty, Y.H. Jo, D.H. Yeon, I.J. Choi, Y.S. Cho, Stress-induced anomalous shift of optical band gap in ZnO:Al thin films. Appl. Phys. Lett. 95(6), 062103 (2009)CrossRefADSGoogle Scholar
  34. 34.
    J.B. Sokoloff, Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials. Phys. Rep. 126(4), 189–244 (2017)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.State Key Laboratory of Infrared PhysicsShanghai Institute of Technical Physics, Chinese Academy of SciencesShanghaiChina
  3. 3.Aviation Key Laboratory of Science and Technology on High Performance Electromagnetic WindowsAVIC Research Institute for Special Structures of Aeronautical CompositesJinanChina

Personalised recommendations