Applied Physics A

, 125:97 | Cite as

Luminescent, semiconducting, thermal, and structural performance of Ho3+-doped lithium borate glasses with CaF2 or MgF2

  • M. A. MarzoukEmail author
  • I. M. Elkashef
  • H. A. Elbatal


Multicomponent lithium borate glasses containing either CaF2 or MgF2 and doped with 0.125 → 0.5% Ho2O3 replacing Li2O were prepared by the melting and annealing technique. The optical, FTIR, photoluminescence spectral and thermal properties of the prepared glasses were examined. The glasses were subjected to the controlled heat treatment two-step regime to be converted to their corresponding glass–ceramics. X-ray diffraction studies indicate the separation of different crystalline phases upon heat treatment in accordance with the presence of either CaF2 or MgF2. The optical spectral measurements of the two undoped glasses show a prominent UV absorption which is due to unavoidable contaminated trace iron impurities, while Ho2O3-doped glasses show additional extended visible–near IR absorption peaks which are related to absorption of Ho3+ ions. Structural FTIR measurements indicate the appearance of nearly similar condensed vibrational bands within the range 400–1600 cm−1 which are correlated with the presence of both triangular and tetrahedral borate groups within their distinct varying wavenumbers. The IR spectra of the glass–ceramic derivatives resemble to a large extent that for their parent glasses with minor variations. The photoluminescence (PL) spectra reveal four distinct excitation peaks within the range 365 → 453 nm and two emission peaks at about 480 and 575 nm. The glass–ceramics PL spectra show minor variations. The thermal expansion curves of the selected undoped and high 0.5 Ho2O3-doped glass from the two studied series show comparable thermal parameters revealing some variations within the thermal data in accordance with the suggested different housing behaviors of constitutional MgF2 or CaF2. The calculated optical parameters data involving the optical bandgap, Urbach energy, and refractive index are assumed to be correlated with the constitutional network structure of glass and its change with variations in the glass composition or percent of dopant oxide.


  1. 1.
    G. Blasse, B.C. Grabmaier, Luminescent materials, Springer, Berlin (1994)CrossRefGoogle Scholar
  2. 2.
    R. Reisfeld, J. Hormadaly, Optical intensities of holmium in tellurite, calibo, and phosphate glasses. J. of Chem. Phys. 64(8), 3207–3212 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    B.V.R. Chowdari, Z. Rong, Study of the fluorinated lithium borate glasses. Solid State Ionics 78, 133–142 (1995)CrossRefGoogle Scholar
  4. 4.
    A.C. Wright, S.A. Feller, A.C. Hannon (Eds) Proc. 2nd Inter. Conf. Borate Glasses, Crystals & Melts, Society of Glass Technology, Sheffield, UK (1997)Google Scholar
  5. 5.
    E.I. Kamitsos, Infrared studies of borate glasses. Phys. Chem. Glasses:European Journal of Glass Science and Technology Part B 44(2), 79–87 (2003)Google Scholar
  6. 6.
    J.E. Shelby, L.D. Baker, Alkali fluoroborate glasses. Phys. Chem. Glasses 39, 23–28 (1998)Google Scholar
  7. 7.
    H. Doweidar, G. El-Damrawi, M. Abdelghany, Structure and properties of CaF2 B2O3glasses. J. Mater. Sci. 47(9), 4028–4035 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M.L. Huggins, T. Abe, Structure of borate glasses. J. Am. Ceram. Soc. 40(9), 287–292 (1957)CrossRefGoogle Scholar
  9. 9.
    B. Lai, L. Feng, J. Zhang, J. Wang, Q. Su, Multi-phonon-assisted relaxation and Yb3+sensitized bright red-dominant upconversion luminescence of Ho3+ in YF3-BaF2-Ba(PO3)2 glass. Appl. Phys. B 110, 101–110 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    D. Rajesh, M. Dhamodhara Naidu, Y.C. Ratnakaram, A. Balakrishna, Ho3+-doped strontium–aluminium–bismuth–borate for green light emission. Lumin. 29(7), 854–860 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Maheswari, V. Naresh, R. Ramaraghavulu, S. Buddhudu, B.H. Rudramadevi, Studies on thermal and spectral properties of Ho3+: lithium borate glasses. Inter. J. Eng. Res. Technol. 3(7), 574–580 (2014)Google Scholar
  12. 12.
    A. Pandey, H.C. Swart, Luminescence investigation of visible light emitting Ho3+ doped tellurite glass. J. Lumin. 169, 93–98 (2016)CrossRefGoogle Scholar
  13. 13.
    A.F.H. Librantz, S.D. Jackson, F.H. Jagosich, L. Gomes, G. Poirier, S.J.L. Ribeiro, Y. Messaddeq, Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses. J. Appl. Phys. 101, 123111–123112 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    T. Miyakawa, D.L. Dexter, P. Sidebands, Multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B 1, 2961–2969 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, Q. Su, Optical properties of Ho3+-doped novel oxyfluoride glasses. J. Lumin. 124(2), 187–194 (2007)CrossRefGoogle Scholar
  16. 16.
    N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials, second edn. (Clarendon press, Oxford, 1979)Google Scholar
  17. 17.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)ADSCrossRefGoogle Scholar
  18. 18.
    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736–1740 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    W.A. Weyl, E.C. Marboe, The constitution of glasses; a dynamic interpretation, vol. I (Academic Press, New York, 1962), p. 33Google Scholar
  20. 20.
    D.G. Holloway, The physical properties of glass, Wykeham, London (1973) p. 36Google Scholar
  21. 21.
    H. Rawson, Properties and applications of glass, Glass Science and Technology, Vol.3, Elsevier, Amesterdam (1980) p. 67Google Scholar
  22. 22.
    J.E. Shelby, Introduction to glass science and technology, 2nd Edition (the Royal Society of Chemistry, Cambridge, 2005), pp. 151–158Google Scholar
  23. 23.
    M.A. Marzouk, F.H. ElBatal, K.M. ElBadry, H.A. ElBatal, Optical, structural and thermal properties of sodium metaphosphate glasses containing Bi2O3 with interactions of gamma rays. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 171, 454–460 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Duffy, Charge transfer spectra of metal ions in glass. Phys. Chem. Glasses 38, 289–294 (1997)Google Scholar
  25. 25.
    U. Natura, D. Ehrt, Formation of radiation defects in silicate and borosilicate glasses caused by UV lamp and excimer laser irradiation. Glastech. Ber. Glass Sci.Technol. 72(9), 295 (1999)Google Scholar
  26. 26.
    D. Möncke, D. Ehrt, Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants. Opt. Mater. 25, 425–437 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    D. Ehrt, Review: Phosphate and fluoride phosphate optical glass properties, structure and applications. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 56(6), 217–234 (2015)Google Scholar
  28. 28.
    S.Y. Marzouk, F.H. Elbatal, Ultraviolet–visible absorption of gamma-irradiated transition metal ions doped in sodium metaphosphate glasses. Nucl. Instr. Meth. Phys. Res. (B) 248, 90–102 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    P.E. Gusev, V.I. Arbuzov, M.V. Voroshilova, S.I. Nikitina, A.D. Semenov, Y.K. Fedorov, Effect of coloring impurities on the absorption in neodymium phosphate laser glass at a lasing wavelength. Glass Phys. Chem 32, 146–152 (2006)CrossRefGoogle Scholar
  30. 30.
    M.A. Marzouk, A.M. Fayad, H.A. ElBatal, Correlation between luminescence and crystallization characteristics of Dy3+ doped P2O5–BaO–SeO2 glasses for white LED application. J. Mater. Sci.: Mater. Electron. 28, 13101–13111 (2017)Google Scholar
  31. 31.
    M.A. Marzouk, I.S. Ali, H.A. ElBatal, Optical, FT infrared and photoluminescence spectra of CeO2-doped Na2O–ZnO–B2O3 host glass and effects of gamma irradiation. J. Non-Cryst. Solids 485, 14–23 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    S. Babu, M. Seshadri, A. Balakrishna, V. Reddy Prasad, Y.C. Ratnakaram, Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center. Phys. B 479, 26–34 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    V. Reddy Prasad, S. Damodaraiah, Y.C. Ratnakaram, Optical spectroscopy and luminescence properties of Ho3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications. Opt. Mater. 78, 63–71 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    N.S. Hussain, N. Ali, A.G. Dias, M.A. Lopes, J.D. Santos, S. Buddhudu, Absorption and emission properties of Ho3+ doped lead–zinc–borate glasses. Thin Solid Films 515, 318–325 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    T. Suhasini, B.C. Jamalaiah, T. Chengaiah, J.S. Kumar, L.R. Moorthy, An investigation on visible luminescence of Ho3+ activated LBTAF glasses. Phys. B 407, 523–527 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    M.A. Marzouk, S.A.M. Abdel-Hameed, Crystallization and photoluminescent properties of Eu, Gd, Sm, Nd co-doped SrAl2B2O7 nanocrystals phosphors prepared by glass-ceramic technique. J. Lumin. 205, 248–257 (2019)CrossRefGoogle Scholar
  37. 37.
    M.R. Sahar, A. S. Budi,Optical band gap and IR spectra of glasses in the system [Nd2O3](x)–[CuO](35 – x)–[P2O5](65). Solid State Science and Technology 14(1), 115–120 (2006)Google Scholar
  38. 38.
    M.A. Marzouk, A.M. Fayad, Optical band gap and structural study on GeO2- and Y2O3-doped barium aluminoborate glasses. Appl. Phys. A 122, 931 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Marzouk, Optical characterization of some rare earth ions doped bismuth borate glasses and effect of gamma irradiation. J. Molec. Struc. 1019, 80–90 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    J. Chimalawong, T. Kaewkhao, C. Kittiauchawal, P. Kedkaew, Limsuwan, Optical properties of the SiO2–Na2O–CaO–Nd2O3 Glasses. Am. J. Appl. Sci. 7(4), 584–589 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Boonin, O. Chaemlek, P. Limkitjaroenporn, H. Kim, J. Kaewkhao, Physical and Optical Properties of Ce3+ Doped in Bismuth Borate Glass. Adv. Mater. Res. 770, 254–257 (2013)CrossRefGoogle Scholar
  42. 42.
    P. Chimalawong, J. Kaewkhao, C. Kedkaew, Optical and electronic polarizability investigation of Nd3+ doped soda-lime-silicate glasses. J. Phy. Chem. Sol. 71, 965–970 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    H. Ming, H.M. Kamari, W.M.D. Wan-Yusoff, Optical properties of bismuth tellurite based glass. Int. J. Mol. Sci. 13, 4623–4631 (2012)CrossRefGoogle Scholar
  44. 44.
    P. Sharma, M. Vashistha, I.P. Jain, Optical properties of Ge20Se80 – xBix thin films. ‏J. Optoelectr. & Adv. Mater. 7(5), 2647–2654 (2005)Google Scholar
  45. 45.
    N. Shasmal, A.R. Molla, B. Karmakar, Synthesis and characterization of chloroborosilicate glasses in the K2O–BaO–Al2O3–B2O3–SiO2–BaCl2 system. J. Non-Cryst. Solids 398–399, 32–41 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    S. Sanghi, S. Sindhu, A. Agarwal, V.P. Seth,Physical, optical and electrical properties of calcium bismuth borate glasses Radiat. Eff. Defects Solids 159, 369–379 (2004)CrossRefGoogle Scholar
  47. 47.
    A.M. Babu, B.C. Jamalaiah, T. Sasikala, S.A. Saleem, L.R. Moorthy, Absorption and emission spectral studies of Sm3+-doped lead tungstate tellurite glasses J. Alloys Compd. 509, 4743–4747 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Marzouk
    • 1
    Email author
  • I. M. Elkashef
    • 2
  • H. A. Elbatal
    • 1
  1. 1.Glass Research DepartmentNational Research CentreDokki, GizaEgypt
  2. 2.Physics Department, Faculty of ScienceArish UniversityArishEgypt

Personalised recommendations