Applied Physics A

, 125:146 | Cite as

Impact of annealing on martensitic transformation of Mn50Ni42.5Sn7.5 shape memory alloy

  • T. BachagaEmail author
  • J. ZhangEmail author
  • S. Ali
  • J. J. Sunol
  • M. Khitouni


The impact of annealing on the structural and martensitic transformation of Mn50Ni42.5Sn7.5 (at.%) shape memory alloy was systematically investigated using a scanning electron microscope, X-ray diffraction (XRD), and differential scanning calorimetry. Analysis of X-ray diffraction patterns confirms that the as-cast and annealed alloys have martensitic structure at room temperature: seven-layered monoclinic 14M. In addition, it has observed that during annealing, the transition temperatures have increased relative to the cast alloy. Also, a high dependence between the cooling rate and activation energy has detected. A more detailed characterization of martensitic transition and account of thermodynamic parameters were examined after annealing.



This work was funded by the “Taishan Scholar” Project of Shandong Province and Key Basic Research Project of Shandong Natural Science Foundation of China (no. ZR2017ZB0422).


  1. 1.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 7575, 104414 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    T. Bachaga, R. Daly, L. Escoda, J.J. Suñol, M. Khitouni, Influence of chemical composition on martensitic transformation of MnNiIn shape memory alloys. J. Therm. Anal. Calorim. 122, 167 (2015)CrossRefGoogle Scholar
  3. 3.
    J.J. Sunol, L. Escoda, B. Hernando, J.L. Sanchez, V.M. LIamazares, Prida, Structural behavior of Ni–Mn–(In, Sn) Heusler melt spun ribbons. J. ESOMAT 2009, 02031 (2009). CrossRefGoogle Scholar
  4. 4.
    T. Bachaga, R. Daly, M. Khitouni, L. Escoda, J. Saurina, J.J. Sunol, Thermal and structural analysis of Mn49.3Ni43.7Sn7.0 Heusler alloy ribbons. Entropy 17, 646 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    G. Yu, Y. Xu, Z. Liu, H. Qiu, Z. Zhu, X. Huang, L. Pan, Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 34, 527 (2015)CrossRefGoogle Scholar
  6. 6.
    R. Coll, L. Escoda, J. Saurina, J.L. Sanchez-Llamazares, B. Hernando, J.J. Sunol, Martensitic transformation in Mn–Ni–Sn Heusler alloys. J. Therm. Anal. Calorim. 99, 905 (2010)CrossRefGoogle Scholar
  7. 7.
    Z. Wu, Z. Liu, H. Yang, Y. Liu, G. Wu, Martensitic and magnetic transformation behaviors in Mn50Ni42–xSn8Cox polycrystalline alloys. J. Phys. D Appl. Phys. 44, 385403 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A. Ghosh, K. Mandal, Large magnetic entropy change and magnetoresistance associated with a martensitic transition of Mn-rich Mn50.5–xNi41Sn8.5+x alloys. J. Phys. D Appl. Phys. 46, 435001 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L. Ma, W.H. Wang, J.B. Lu, J.Q. Li, C.M. Zhen, D.L. Hou, G.H. Wu, Coexistence of reentrant-spin-glass and ferromagnetic martensitic phases in the Mn2Ni1.6Sn0.4 Heusler alloy. Appl. Phys. Lett. 99, 182507 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    L. Ma, S.Q. Wang, Y.Z. Li, C.M. Zhen, D.L. Hou, W.H. Wang, J.L. Chen, G.H. Wu, Martensitic and magnetic transformation in Mn50Ni50–xSnx ferromagnetic shape memory alloys. J. Appl. Phys. 112, 083902 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    D.L. Schlagel, R.W. McCallum, T.A. Lograsso, Influence of solidification microstructure on the magnetic properties of Ni–Mn–Sn Heusler alloys. J. Alloy. Compd. 463, 38 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Xuan, K. Xie, D. Wang, Z. Han, C. Zhang, B. Gu, Y. Du, Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons. Appl. Phys. Lett. 92, 242506 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    T. Fichtner, C. Wang, A.A. Levin, G. Kreiner, C.S. Mejia, S. Fabbrici, F. Albertini, C. Felser. effects of annealing on the martensitic transformation of Ni-based ferromagnetic shape memory heusler alloys and nanoparticles. Metals 5, 484–503 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Liu, M. Xia, Y. Huang, H. Zheng, J. Li, Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J. Alloy. Compd. 417, 96 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Sarma, A. Srinivasan, Influence of annealing temperature on the properties of Co–Ni–Ga ferromagnetic shape memory alloy. Adv. Mater. Res. 52, 63 (2008)CrossRefGoogle Scholar
  16. 16.
    V. Petrisek, D.M. Jana, The Crystallographic Computing System (Institute of Physics, Prague, 2000)Google Scholar
  17. 17.
    H. Zheng, D. Wu, S. Xue, J. Frenzel, G. Eggeler, Q. Zhai, Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons. Acta. Mater. 59, 5692 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. J. Phys. Rev. B 72, 014412 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    V.D. Buchelnikov, S.V. Taskaev, M.A. Zagrebin, A.T. Zayak, T. Takagi, Phase transitions in Ni–Mn–Ga alloys with the account of crystal lattice modulation. J. Mag. Mag. Mater. 316, 591 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    T. Sánchez, J.L. Sánchez-Llamazares, B. Hernando, J.D. Santos, M.L. Sánchez, M.J. Pérez, J.J. Suñol, R. Sato, R. Grössinger, Annealing effect on martensitic transformation and magneto-structural properties of Ni–Mn–In melt spun ribbons. Mater. Sci. Forum 635, 81–87 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Kaya, Y. Elerman, I. Dincer, Effect of heat treatment procedure on magnetic and magnetocaloric properties of Ni43Mn46In11 melt spun ribbons. Philos. Mag. 98, 1919–1932 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    A.M. Glezer, E.N. Blinova, V.A. Pozdnyakov, A.V. Shelyakov, Martensite transformation in nanoparticles and nanomaterials. J. Nanopart. Res. 5, 551–560 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    H.X. Zheng, M.X. Xia, J. Liu, J.G. Li, Martensitic transformation of highly undercooled Ni–Fe–Ga magnetic shape memory alloys. J. Alloy. Compd. 385, 144 (2004)CrossRefGoogle Scholar
  24. 24.
    H.X. Zheng, J. Liu, M.X. Xia, J.G. Li, Martensitic transformation of Ni–Fe–Ga magnetic shape memory alloys. J. Alloy. Compd. 387, 265 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Fang, B. Wong, Y. Bai, Kinetic modelling of thermophysical properties of shape memory alloys during phase transformation. Const. Buil. Mater. 131, 146–155 (2017)CrossRefGoogle Scholar
  26. 26.
    V. Recarte, J.I. Perez-Landazabal, A. Ibarra, M.L. No, J.S. Juan, High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. Mater. Sci. Eng. A 378, 238–242 (2004)CrossRefGoogle Scholar
  27. 27.
    Z. Guo, W. Sha, D. Li, Quantification of phase transformation kinetics of 18 wt% Ni C250 maraging steel. Mater. Sci. Eng. A 373, 10–20 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Malinov, Z. Guo, W. Sha, A. Wilson, Differential scanning calorimetry study and computer modeling of β → α phase transformation in a Ti–6Al–4V alloy. Metall. Mater. Trans. A 32, 879–887 (2001)CrossRefGoogle Scholar
  29. 29.
    V. Sanchez-Alarcos, J.I. Perez-Landazabal, V. Recarte, J.A. Rodrıguez-Velamazan, V.A. Chernenko, J. Phys. Condens. Matter 22, 166001 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    J. Vazquez, P. Villares, R. Jimenez-Garay, A theoretical method for deducing the evolution with time of the fraction crystallized and obtaining the kinetic parameters by DSC, using non-isothermal techniques. J. Alloy. Compd. 257, 259 (1997)CrossRefGoogle Scholar
  31. 31.
    J. Fernandez, A.V. Benedetti, J.M. Guilemany, X.M. Zhang, Thermal stability of the martensitic transformation of Cu–Al–Ni–Mn–Ti. Mater. Sci. Eng. A 438–440, 723–725 (2006)CrossRefGoogle Scholar
  32. 32.
    T.Y. Hsu, Martensitic transformation and martensite (Science, Beijing, 1999)Google Scholar
  33. 33.
    Z.Q. Kuang, J.X. Zhang, X.H. Zhang, K.F. Liang, P.C.W. Fung, Scaling behaviours in the thermoelastic martensitic transformation of Co. Solid State Commun. 114, 231–235 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer Sciences and TechnologyUniversity of QingdaoQingdaoChina
  2. 2.Laboratory of Inorganic chemistry, UR-11-ES-73University of SfaxSfaxTunisia
  3. 3.Dep. de FisicaUniversitat de GironaGironaSpain

Personalised recommendations