Advertisement

Applied Physics A

, 125:95 | Cite as

Analysis of electron paramagnetic resonance and optical studies of central metal ion (Cu2+) in lithium potassium phthalate single crystal

  • N. Subbulakshmi
  • S. Radha Krishnan
  • V. M. Shanmugam
  • P. SubramanianEmail author
Article
  • 21 Downloads

Abstract

Molecular ion Cu2+ in lithium potassium phthalate (LiKP) single crystal has been grown at room temperature by slow evaporation process. Single crystal EPR study has been taken for the LiKP:Cu2+ crystal. Presence of two Cu2+ sites is reported from EPR data. Angular variation plot in the three planes is used to determine the principal g and A values. Spin Hamiltonian parameter values reveal that site A and site B exist as orthorhombic and axial crystal field symmetry around the impurity ion. Substitutional incorporation has occurred for site A and site B exists as interstitial position in the LiKP:Cu2+ crystal lattice. Using admixture coefficient terms, the ground state of the grown crystal has been calculated. Molecular orbital coefficients have been obtained from the principal g and A values. Optical absorption study was carried out at room temperature. Through optical absorption data, Dq, Ds, and Dt parameters have been evaluated, showing the tetragonally distorted octahedral symmetry of Cu2+ ion in LiKP lattice.

References

  1. 1.
    W. Levason, M.D. Spicer, Coord. Chem. Rev. 76, 45–120 (1987)CrossRefGoogle Scholar
  2. 2.
    E.D. Mauro, S.M. Domiciano, J. Phys. B 304, 398–403 (2001)CrossRefGoogle Scholar
  3. 3.
    S.K. Misra, X. Li, C. Wang, J. Phys. Condens. Matter 3, 8479–8489 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    R. Kripal, S. Misra, J. Phys. Chem. Solids 65, 939–948 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    K. Juliet Sheela, S. Radha Krishnan, V.M. Shanmugam, P. Subramanian, AIP Conf. Proc. 1731, 090022-1–090022-3 (2016)Google Scholar
  6. 6.
    V.S. Xavier Anthonisamy, R. Murugesan, Chem. Phys. Lett. 287, 353–358 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    B. Karabulut, R. Tapramaz, A. Bulut, Z. Naturforsch. 54a, 256–260 (1999)ADSGoogle Scholar
  8. 8.
    R. Kripal, S. Misra, I. Mishra, Mol. Phys. 199, 239–249 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Hoffmann, J. Goslar, K. Tadyszak, J. Magn. Reson. 205, 293–303 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    R. Kripal, S. Mishra, J. Phys. Soc. Jpn. 70, 2158–2160 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    R. Murugesan, S. Subramanian, Mol. Phys. 52, 129–136 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    W. Bednarski, S. Waplak, L.F. Kirpichnikova, J. Phys. Chem. Solids 60, 1669–1673 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    P. Huang, H. Ping, M.G. Zhao, J. Phys. Chem. Solids 64, 523–525 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    M.R. Sun Kou, S. Mendioroz, P. Salerno, V. Munoz, Spectrosc. Lett. 35, 565–580 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    C. Karunakaran, K.R. Justin Thomas, A. Shunmugasundaram, R. Murugesan, Spectrochim. Acta A Mol. Biomol. Spectrosc 57, 441–449 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley, Hoboken, 2003)zbMATHGoogle Scholar
  17. 17.
    Y. Mori, Y.K. Yap, T. Kamimura, M. Yoshimura, T. Sasaki, Opt. Mater. 19, 1–5 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1990)Google Scholar
  19. 19.
    D. Xu, D. Xue, J. Cryst. Growth 310, 2161–2175 (2008)ADSGoogle Scholar
  20. 20.
    T. Pal, T. Kar, G. Bocelli, L. Rigi, Cryst. Growth Des. 3, 13–16 (2003)CrossRefGoogle Scholar
  21. 21.
    In: J. Wiliams (ed.), Nonlinear Optical Properties Organic and Polymeric Materials, American Chemical Society Symposium Series, vol. 233. American Chemical Society, Washington DC (1983)Google Scholar
  22. 22.
    H. Kuppers, Acta Crystallogr. 44, 2093–2095 (1988)Google Scholar
  23. 23.
    G. Adiwidjaja, H. Kuppers, Acta Crystallogr. 34, 2003–2005 (1978)CrossRefGoogle Scholar
  24. 24.
    H. Kuppers, Acta Crystallogr. 34, 3763–3765 (1978)CrossRefGoogle Scholar
  25. 25.
    D.S. Chemla, J. Zyss, Academic Press, New York (1987)Google Scholar
  26. 26.
    N. Kejalakshmy, K. Srinivasan, Opt. Mater. 27, 389–394 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    B. Sivakumar, S. Gokul Raj, G. Ramesh Kumar, R. Mohan, J. Cryst. Process Technol. 33, 3755–3760 (2012)Google Scholar
  28. 28.
    B. Sivakumar, S. Gokul Raj, G. Ramesh Kumar, R. Mohan, J. Cryst. Process Technol. 2, 130–136 (2012)CrossRefGoogle Scholar
  29. 29.
    N. Balamurugan, M. Lenin, P. Ramasamy, Mater. Lett. 61, 1896–1898 (2007)CrossRefGoogle Scholar
  30. 30.
    A. Senthil, P. Ramasamy, G. Bhagavannarayana, J. Cryst. Growth 311, 2696–2701 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    N. Subbulakshmi, K. Juliet Sheela, P. Subramanian, AIP Conf. Proc. 1832, 100009-1–10009-3 (2017)Google Scholar
  32. 32.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970)Google Scholar
  33. 33.
    D.S. Schonland, Proc. Phys. Soc. (Lond.) 73, 788–792 (1959)ADSCrossRefGoogle Scholar
  34. 34.
    D. Suryanarayana, J. Sobhanadri, J. Magn.Reson. 14, 1–12 (1974)ADSGoogle Scholar
  35. 35.
    B. Karabulut, F. Düzgün, Spectrochim. Acta A75, 1200–1202 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    P. Dwivedi, R. Kripal, M.G. Misra, J. Alloy. Compd. 499, 17–22 (2010)CrossRefGoogle Scholar
  37. 37.
    E. Poonguzhali, R. Srinivasan, R. Venkatesan, R.V.S.S.N. Ravikumar, P.S. Rao, J. Phys. Chem.Solids 64, 1139–1146 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    P. Sambasiva Rao, T.M. Rajendiran, R. Venkatesan, N. Madhu, A.V. Chandrasekar, B.J. Reddy, Y.P. Reddy, R.V.S.S.N. Ravikumar, Spectrochim. Acta A57, 2781–2787 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    J.D. Swalen, B. Johnson, H.M. Gladney, J. Chem. Phys. 52, 4078–4086 (1970)ADSCrossRefGoogle Scholar
  40. 40.
    P. Geetha, K. Parthipan, P. Sathya, S. Balaji, Asian J. Chem 25, 4791–4796 (2013)CrossRefGoogle Scholar
  41. 41.
    S. Mithira, B. Natarajan, S. Deepa, R.V.S.S.N. Ravikumar, P.S. Rao, J. Mol. Struct. 839, 2–9 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    I. Sougandi, R. Venkatesen, P.S. Rao, Spectrochim. Acta A60, 2653–2660 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    P.S. Rao, S. Subramanian, J. Magn. Reson. 22, 191–206 (1976)ADSGoogle Scholar
  44. 44.
    P.A. Angeli Mary, S. Dhanuskodi, Spectrochim. Acta A58, 1473–1481 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    P.N. Selvakumar, S. Boobalan, P. Sambasiva Rao, P. Subramanian, Spectrosc. Lett. 44, 285–293 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    R. Rama Kumar, B.C. Venkata Reddy, Cryst. Res. Technol. 28, 535–538 (1993)CrossRefGoogle Scholar
  47. 47.
    Y.K.R. Swamy, P.P. Reddy, Y.P. Reddy, J. Phys. B 98, 202–204 (1980)Google Scholar
  48. 48.
    A.H. Maki, B.R. Mc Garvey, J.Chem. Phys. 29, 31–35 (1958)ADSCrossRefGoogle Scholar
  49. 49.
    R. D.Kivelson, Neiman, J. Chem. Phys. 35, 149–155 (1961)ADSCrossRefGoogle Scholar
  50. 50.
    J.J. Prochaska, W.F. Schwindger, M. Schwartz, M.H. Burk, E. Bernarducci, R.A. Lalancettee, J.A. Potenga, H.J. Schugar, J. Am. Chem. Soc. 103, 3446–3455 (1981)CrossRefGoogle Scholar
  51. 51.
    R.V.S.S.N. Ravikumar, R. Komatsu, B.J. Reddy, K. Ikeda, Spectrochim. Acta A59, 3321–3324 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    K. Parthipan, P. Sambasiva Rao, J. Mol. Struct. 977, 130–136 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    C. Shiyamala, R. Venkatesan, P. Sambasiva Rao, Solid State Commun. 128, 137–142 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. Subbulakshmi
    • 1
  • S. Radha Krishnan
    • 2
  • V. M. Shanmugam
    • 2
  • P. Subramanian
    • 1
    Email author
  1. 1.Department of PhysicsThe Gandhigram Rural Institute (Deemed to be University)DindigulIndia
  2. 2.CSIR-Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations