Applied Physics A

, 125:129 | Cite as

Photonic-doped epsilon-near-zero media for coherent perfect absorption

  • Wenjie Ji
  • Dunjian Wang
  • Sucheng Li
  • Yuanfang ShangEmail author
  • Wei Xiong
  • Lei Zhang
  • Jie Luo


Coherent perfect absorption increases light absorption to 100% via appropriate interference of waves and provides attractive opportunities for flexible control of light absorption. In this work, we demonstrate that the coherent perfect absorption can be realized using photonic doping of epsilon-near-zero media with both lossless and lossy defects. Based on photonic doping theory, the epsilon-near-zero medium with defects can be homogenized as an effective medium. We find that the lossless defects can tune the effective permeability to be zero, and the lossy defects can further tune the effective permeability to be a pure imaginary value to realize the coherent perfect absorption. Moreover, we show that the doping scheme enables many ways to control absorption, such as multiple channels and multiple doping defects, etc. Our work reveals a unique approach for advanced coherent perfect absorption with flexible control functionalities.



This work is supported by the Shenzhen Science and Technology Plan (Grant No: JSGG20160819150017627, JSGG20160819150000459). Wenjie Jie, Dunjian Wang, and Sucheng Li contributed equally to this work.


  1. 1.
    D.G. Baranov, A. Krasnok, T. Shegai, A. Alù, Y. Chong, Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    S. Longhi, PT-symmetric laser absorber. Phys. Rev. A 82, 031801 (2010) R)ADSCrossRefGoogle Scholar
  4. 4.
    Y.D. Chong, L. Ge, A.D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    H. Noh, Y. Chong, A.D. Stone, H. Cao, Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108, 186805 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J. Zhang, K.F. MacDonald, N.I. Zheludev, Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M. Pu, Q. Feng, C. Hu, X. Luo, Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7, 733–738 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Luo, S. Li, B. Hou, Y. Lai, Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields. Phys. Rev. B 90, 165128 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301 (2015) R)ADSCrossRefGoogle Scholar
  11. 11.
    C. Yan, M. Pu, J. Luo, Y. Huang, X. Li, X. Ma, X. Luo, Coherent perfect absorption of electromagnetic wave in subwavelength structures. Opt. Laser Technol. 101, 499–506 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    M.B. Pu, Q. Feng, M. Wang, C.G. Hu, C. Huang, X.L. Ma, Z.Y. Zhao, C.T. Wang, X.G. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S.M. Rao, J.J.F. Heitz, T. Roger, N. Westerberg, D. Faccio, Coherent control of light interaction with graphene. Opt. Lett. 39, 5345 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    S. Huang, Z. Xie, W. Chen, J. Lei, F. Wang, K. Liu, L. Li, Metasurface with multi-sized structure for multi-band coherent perfect absorption. Opt. Express 26, 7066 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    W. Lv, J. Bing, Y. Deng, D. Duan, Z. Zhu, Y. Li, C. Guan, J. Shi, Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials. Opt. Express 26, 17236 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    K. Nireekshan, Reddy, S. Dutta Gupta, Light-controlled perfect absorption of light. Opt. Lett. 38, 5252–5255 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C.T. Chan, Y. Wu, Y. Lai, Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss. Phys. Rev. A 94, 063841 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    J. Luo, B. Liu, Z.H. Hang, Y. Lai, Coherent perfect absorption via photonic doping of zero-index media, Laser Photonics Rev. 12, 1800001 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    X. Huang, Y. Lai, Z.H. Hang, H. Zheng, C.T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics 7, 791–795 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Li, S. Kita, P. Muñoz, O. Reshef, D.I. Vulis, M. Yin, M. Lončar, E. Mazur, On-chip zero-index metamaterials. Nat. Photonics 9, 738–742 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z.H. Hang, L. Zhou, Y. Lai, A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci. Appl. 7, 50 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    J. Luo, Z.H. Hang, C.T. Chan, Y. Lai, Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions. Laser Photonics Rev. 9, 523–529 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z.H. Hang, C.T. Chan, Y. Lai, Ultratransparent media and transformation optics with shifted spatial dispersions. Phys. Rev. Lett. 117, 223901 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    I. Liberal, N. Engheta, Near-zero refractive index photonics. Nat. Photonics 11, 149–158 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using €-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, Y. Lai, Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Appl. Phys. Lett. 100, 221903 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Q. Cheng, W.X. Jiang, T.J. Cui, Spatial power combination for omnidirectional radiation via anisotropic metamaterials. Phys. Rev. Lett. 108, 213903 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, C.T. Chan, Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index. Phys. Rev. Lett. 112, 073903 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    T. Wang, J. Luo, L. Gao, P. Xu, Y. Lai, Equivalent perfect magnetic conductor based on epsilon-near-zero media. Appl. Phys. Lett. 104, 211904 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J. Luo, P. Xu, T. Sun, L. Gao, Tunable beam splitting and negative refraction in heterostructure with metamaterial. Appl. Phys. A 104, 1137–1142 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    D.C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N.A. Kuhta, W.D. Goodhue, V.A. Podolskiy, D. Wasserman, Funneling light through a subwavelength aperture with epsilon-near-zero materials. Phys. Rev. Lett. 107, 133901 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Y.C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.J. Greffet, S. Vassant, F. Marquier, M. Sinclair, I. Brener, Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. Nano Lett. 13, 5391–5396 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J.L. Pelouard, J.J. Greffet, Epsilon-near-zero mode for active optoelectronic devices. Phys. Rev. Lett. 109, 237401 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, H.A. Atwater, Nanoscale conducting oxide plasMOStor. Nano Lett. 14, 6463–6468 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    M.Z. Alam, I. De Leon, R.W. Boyd, Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    A.P. Vasudev, J. Kang, J. Park, X. Liu, M.L. Brongersma, Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt. Express 21, 26387 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    J. Kim, A. Dutta, G.V. Naik, A.J. Giles, F.J. Bezares, C.T. Ellis, J.G. Tischler, A.M. Mahmoud, H. Caglayan, O.J. Glembocki, Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Vezzoli, V. Bruno, C. Devault, T. Roger, V.M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, D. Faccio, Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett. 120, 043902 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    I. Liberal, A.M. Mahmoud, Y. Li, B. Edwards, N. Engheta, Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Wu, J. Li, Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett. 102, 183105 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    J. Luo, J. Li, Y. Lai, Electromagnetic impurity-immunity induced by parity-time symmetry. Phys. Rev. X 8, 031035 (2018)Google Scholar
  43. 43.
    M.Z. Alam, S.A. Schulz, J. Upham, I. De Leon, R.W. Boyd, Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics 12, 79–83 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    X. Niu, X. Hu, S. Chu, Q. Gong, Epsilon-near-zero photonics: a new platform for integrated devices, Adv. Opt. Mater., 1701292 (2018)Google Scholar
  45. 45.
    P. Bai, Y. Wu, Y. Lai, Multi-channel coherent perfect absorbers. EPL 114, 28003 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenjie Ji
    • 1
  • Dunjian Wang
    • 1
  • Sucheng Li
    • 2
    • 3
  • Yuanfang Shang
    • 2
    Email author
  • Wei Xiong
    • 2
  • Lei Zhang
    • 2
  • Jie Luo
    • 1
    • 4
  1. 1.School of Physical Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Shenzhen Kuang-Chi Institute of Advanced TechnologyShenzhenChina
  3. 3.Shenzhen Kuang-Chi Cutting-edge Technology Co., LtdShenzhenChina
  4. 4.State Key Laboratory of Meta-RF Electromagnetic Modulation TechnologyShenzhenChina

Personalised recommendations