Advertisement

Applied Physics A

, 125:96 | Cite as

Enhancement in photocatalytic performance of Ag–AgCl decorated with h-WO3 and mechanism insight

  • Chen Chai
  • Jianxin Liu
  • Yawen Wang
  • Xiaochao Zhang
  • Donghong Duan
  • Caimei Fan
  • Yunfang WangEmail author
Article
  • 31 Downloads

Abstract

A h-WO3 decorated Ag–AgCl composite was prepared through facile precipitation and photoreduction methods and demonstrated to be a highly efficient and stable photocatalyst for the degradation of Rhodamine B (RhB) under visible light. Ag–AgCl/h-WO3 exhibited much improved photocatalytic performance was elucidated from the physical–chemical properties of AgCl and h-WO3 and the surface plasmon resonance effect of the Ag particles. The techniques of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectrometry (XPS) and photocurrent were used to characterize crystalline phases, morphology, composition and separation efficiency between electrons (e) and holes (h+) of the synthesized composite photocatalyst. XPS results confirmed the existence of W5+ and W6+ on the surface of h-WO3 sample, which favored electrons transfer between AgCl and Ag, and generated superoxide radical for the degradation of RhB. The active species trapping experiments results further demonstrated that the formation of superoxide radical during the system. Finally, the underlying photocatalytic mechanism for the removal of RhB by Ag–AgCl/h-WO3 composite was examined.

Notes

Acknowledgements

This work was financially supported by the Youth National Natural Science Foundation of China (no. 21808151 and no. 21506144).

References

  1. 1.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503–6570 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Grätzel, Nature 289, 158–160 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wang, F. Meng, W. Xie, C. Gao, Y. Zha, D. Liu, P. Wang, Appl. Phys. A Mater (2018)  https://doi.org/10.1007/s00339-018-2027-1 CrossRefGoogle Scholar
  5. 5.
    J. Zhou, Y. Cheng, J. Yu, J. Photochem. Photobiol. A 223, 82–87 (2011)CrossRefGoogle Scholar
  6. 6.
    Z.Y. Jiang, X.H. Zhang, Z.M. Yuan, J.C. Chen, B.B. Huang, D.D. Dionysiou, G.H. Yang, Chem. Eng. J. 348, 592–598 (2018)CrossRefGoogle Scholar
  7. 7.
    D.B. Ingram, S. Linic, J. Am, Chem. Soc. 133, 5202–5520 (2011)CrossRefGoogle Scholar
  8. 8.
    J.L. Yang, C.Y. Mou, Appl. Catal. B Environ. 231, 283–291 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Khore, S.R. Kadam, S.D. Naik, B.B. Kale, R. Sonawane, New J. Chem. 42, 10958–10968 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Bora, K. Mohan, S. Doley, P. Goswami, S.K. Dolui, Catal. Sci. Technol. 8, 4180–4192 (2018)CrossRefGoogle Scholar
  11. 11.
    Y.T. Ma, Z.H. Li, Appl. Surf. Sci. 452, 279–285 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    R. Dong, B. Tian, C. Zeng, T. Li, T. Wang, J. Zhang, J. Phys. Chem. C 117, 213–220 (2013)CrossRefGoogle Scholar
  13. 13.
    C.H. An, S.T. Wang, Y.G. Sun, Q.H. Zhang, J. Zhang, C.Y. Wang, J.Y. Fang, J. Mater. Chem. A 4, 4336–4352 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Fan, W. Ma, D. Han, S. Gan, X. Dong, L. Niu, Adv. Mater. 27, 3767–3773 (2015)CrossRefGoogle Scholar
  15. 15.
    G.Q. Wang, H. Mitomo, Y. Matsuo, K. Niikura, K. Ljiro, J. Mater. Chem. B 1, 5899–5907 (2013)CrossRefGoogle Scholar
  16. 16.
    J.F. Guo, B.W. Ma, A.Y. Yin, K.N. Fan, W.L. Dai, J. Hazard. Mater. 211, 77–82 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Zhang, X. Fan, X. Quan, S. Chen, H. Yu, Environ. Sci. Technol. 45, 5731–5736 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    J.J. Yu, D.P. Sun, T.H. Wang, F. Li, Chem. Eng. J. 334, 225–236 (2018)CrossRefGoogle Scholar
  19. 19.
    C.P. Byers, H. Zhang, D.F. Swearer, M. Yorulmaz, B.S. Hoener, D. Huang, A. Hoggard, W.S. Chang, P. Mulvaney, E. Ringe, N.J. Halas, P. Nordlander, S. Link, C.F. Landes, Sci. Adv. 1, e1500988 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, Appl. Catal. B Environ. 180, 663–673 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Liu, Y.H. Yang, Q. Liu, Y.M. Li, J. Lin, W.Z. Li, J. Li, J. Colloid Interface Sci. 512, 86–95 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    S.C. Wang, H.J. Chen, G.P. Gao, T. Butburee, M.Q. Lyu, S. Thaweesak, J.H. Yun, A.J. Du, G. Liu, L.Z. Wang, Nano Energy 24, 94–102 (2016)CrossRefGoogle Scholar
  23. 23.
    P.I. Gouma, K. Kalyanasundaram, J. Mater. Sci. 50, 3517–3522 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    X.X. Yao, X.H. Liu, J. Hazard Mater. 280, 260–268 (2014)CrossRefGoogle Scholar
  25. 25.
    Y.M. Ren, Q. X, X.L. Zheng, Y.Z. Fu, Z. Wang, H.L. Chen, Y.X. Weng, Y.C. Zhou, Appl. Catal. B Environ. 231, 381–390 (2018)CrossRefGoogle Scholar
  26. 26.
    L.W. Wang, J.X. Liu, Y.W. Wang, X.C. Zhang, D.H. Duan, C.M. Fan, Y.F. Wang, Colloids Surf. A 541, 145–153 (2018)CrossRefGoogle Scholar
  27. 27.
    M.L. Yin, L.M. Yu, S.Z. Liu, Mater. Lett. 186, 66–69 (2017)CrossRefGoogle Scholar
  28. 28.
    Q.Y. Li, G.R. Duan, J. Luo, X.H. Liu, J. Energy. Chem. 27, 826–835 (2018)CrossRefGoogle Scholar
  29. 29.
    H.B. Fang, X. Cao, J.J. Yu, X. Lv, N. Yang, T.H. Wang, W. Jiang, J. Mater. Sci. 54, 286–301 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Angew. Chem. Int. Ed. 47, 7931–7933 (2008)CrossRefGoogle Scholar
  31. 31.
    M. Yan, G. Li, C. Guo, W. Guo, D. Ding, S. Zhang, S. Liu, Nanoscale 8, 17828–17835 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chen Chai
    • 1
  • Jianxin Liu
    • 1
  • Yawen Wang
    • 1
  • Xiaochao Zhang
    • 1
  • Donghong Duan
    • 1
  • Caimei Fan
    • 1
  • Yunfang Wang
    • 1
    Email author
  1. 1.Department of Chemical EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations