Applied Physics A

, 125:99 | Cite as

Boron film laser deposition by ultrashort pulses for use as neutron converter material

  • Priscila CostaEmail author
  • Marcus P. Raele
  • Noé G. P. Machado
  • André F. Silva
  • Nilson D. VieiraJr.
  • Frederico A. Genezini
  • Ricardo E. Samad


This study investigated the production of boron films by femtosecond pulsed laser deposition (PLD) to be used as converters on bulk semiconductor neutron detectors. The ablation threshold of metallic boron was determined and the film growth was studied as a function of deposition time (5–90 min) and laser pulse energy (35–530 μJ). The films were characterized by scanning electron microscopy (SEM), revealing a flaky morphology, optical profilometry, which determined the films thicknesses (from 80 nm up to 4 μm), Ion Beam Analysis (IBA) that assessed their elemental composition and X-ray diffraction (XRD), which revealed an amorphous structure. In addition, a thermal load study was performed to evaluate the heat flux onto the substrate during deposition process. Stable boron films obtained show that the femtosecond PLD process is reliable and reproducible for the fabrication of thick boron coatings.



We would like to thank the National Council for Scientific and Technological Development (CNPq): projects 465763/2014-6 and 141628/2015-4; Secretary of Strategic Affairs; Lamfi (Laboratory of material analyses using ion beams—São Paulo University); the support given by the Center for Lasers and Applications’ Multiuser Facility at IPEN-CNEN/SP and the Nuclear Fuel Center Multiuser Facility X-Ray Diffraction Laboratory at IPEN-CNEN/SP.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    C.C. Klepper, R.C. Hazelton, E.J. Yadlowsky, E.P. Carlson, M.D. Keitz, J.M. Williams, R.A. Zuhr, D.B. Poker, J. Vac. Sci. Technol. A Vac. Surf. Film 20, 725 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    C.C. Klepper, J.M. Williams, J.J. Truhan, J. Qu, L. Riester, R.C. Hazelton, J.J. Moschella, P.J. Blau, J.P. Anderson, O.O. Popoola, M.D. Keitz, Thin Solid Films 516, 3070 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Vidal-Dasilva, M. Fernández-Perea, J.A. Méndez, J.A. Aznárez, J.I. Larruquert, Appl. Opt. 47, 2926 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    S. Roszeitis, B. Feng, H.P. Martin, A. Michaelis, J. Eur. Ceram. Soc. 34, 327 (2014)CrossRefGoogle Scholar
  5. 5.
    J.E. Martin, Physics for Radiation Protection, Third Edition (2013)Google Scholar
  6. 6.
    P. Costa, M.P. Raele, R.E. Samad, N.D. Vieira, N.G.P. Machado, F.A. Genezini, in High-Power Laser Mater Process Appl Diagnostics, Syst VII, ed. by S. Kaierle, S.W. Heinemann (SPIE, Bellingham, 2018), p. 18Google Scholar
  7. 7.
    Z.F. Song, S.Z. Ye, Z.Y. Chen, L. Song, J. Shen, Appl. Radiat. Isot. 69, 443 (2011)CrossRefGoogle Scholar
  8. 8.
    D.S. McGregor, R.T. Klann, H.K. Gersch, J.D. Sanders, IEEE Nucl. Sci. Symp. Med. Imaging Conf. 4, 2454 (2002)Google Scholar
  9. 9.
    P. Costa, M.P. Raele, H. Yoriyaz, P. de T.D. Siqueira, G.S. Zahn, F.A. Genezini, in Ina 2015 Int Nucl Atl Conf Brazilian Nucl Progr State Policy a Sustain World (Brazil, 2015)Google Scholar
  10. 10.
    C. Höglund, J. Birch, K. Andersen, T. Bigault, J.-C. Buffet, J. Correa, P. van Esch, B. Guerard, R. Hall-Wilton, J. Jensen, A. Khaplanov, F. Piscitelli, C. Vettier, W. Vollenberg, L. Hultman, J. Appl. Phys. 111, 104908 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Wang, C.L. Morris, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 651, 323–325 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    K.A. Nelson, N.S. Edwards, N.J. Hinson, C.D. Wayant, D.S. McGregor, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 767, 14 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Wang, Y. Shimizu, T. Sasaki, K. Kirihara, K. Kawaguchi, K. Kimura, N. Koshizaki, J. Solid State Chem. 177, 1639 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    G. Celentano, A. Vannozzi, A. Mancini, A. Santoni, A. Pietropaolo, G. Claps, E. Bemporad, M. Renzelli, F. Murtas, L. Quintieri, Surf. Coat. Technol. 265, 160 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Chaudhari, A. Singh, A. Topkar, R. Dusane, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 779, 33 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Nikolić, A.M. Conway, C.E. Reinhardt, R.T. Graff, T.F. Wang, N. Deo, C.L. Cheung, Appl. Phys. Lett. 93, 133502 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    T. Shimizu, T. Nakamura, S. Sato, in edited by V.I. Vlad (2007), p. 67850E–67850E–8Google Scholar
  18. 18.
    N. Acacia, E. Fazio, F. Neri, P.M. Ossi, S. Trusso, N. Santo, Radiat. Eff. Defects Solids 163, 293 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72, 315 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    P. Kelly, R. Arnell, Vacuum 56, 159 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    D. Benetti, R. Nouar, R. Nechache, H. Pepin, A. Sarkissian, F. Rosei, J.M. MacLeod, Sci. Rep. 7, 2503 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    E.-S. Lee, J.-K. Park, W.-S. Lee, T.-Y. Seong, Y.-J. Baik, Methods Mater. Int. 19, 1323 (2013)CrossRefGoogle Scholar
  23. 23.
    S.I. Anisimov, D. Bäuerle, B.S. Luk’yanchuk, Phys. Rev. B 48, 12076 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    F. Kokai, M. Taniwaki, K. Takahashi, A. Goto, M. Ishihara, K. Yamamoto, Y. Koga, Diam. Relat. Mater. 10, 1412 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Wang, Y. Shimizu, T. Sasaki, K. Kawaguchi, K. Kimura, N. Koshizaki, Chem. Phys. Lett. 368, 663 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    D. Dellasega, V. Russo, A. Pezzoli, C. Conti, N. Lecis, E. Besozzi, M. Beghi, C.E. Bottani, M. Passoni, Mater. Des. 134, 35 (2017)CrossRefGoogle Scholar
  27. 27.
    K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, M. Schmidt, Phys. Procedia 12, 230 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    C.W. Schneider, T. Lippert, in Laser Process Mater Fundam Appl Dev, ed. by P. Schaaf (Springer, Berlin, 2010), pp. 89–112CrossRefGoogle Scholar
  29. 29.
    D. von der Linde, K. Sokolowski-Tinten, Appl. Surf. Sci. 154, 1 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    N.M. Bulgakova, A.V. Bulgakov, V.P. Zhukov, W. Marine, A.Y. Vorobyev, C. Guo, in Proc SPIE 7005, High-Power Laser Ablation VII, edited by C.R. Phipps (2008), p. 70050CGoogle Scholar
  31. 31.
    B.N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, Appl. Phys. A Mater. Sci. Process. 63, 109 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    N.M. Bulgakova, I.M. Bourakov, Appl. Surf. Sci. 197–198, 41 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)CrossRefGoogle Scholar
  35. 35.
    S.I. Kudryashov, A.A. Ionin, S.V. Makarov, N.N. Mel’nik, L.V. Seleznev, D.V. Sinitsyn, in AIP Conference Proceedings (2012), pp. 244–255Google Scholar
  36. 36.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    A. Sikora, A. Berkesse, O. Bourgeois, J.-L. Garden, C. Guerret-Piécourt, A.-S. Loir, F. Garrelie, C. Donnet, Appl. Phys. A 94, 105 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    L.M. Machado, R.E. Samad, W. de Rossi, N.D.V. Junior, Opt. Express. 20, 4114 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    M.H. Tabacniks, The Laboratory for Material Analysis with Ion Beams LAMFI-USP (World Scientific, Singapore, 1997)Google Scholar
  41. 41.
    T.F. Silva, C.L. Rodrigues, M. Mayer, M.V. Moro, G.F. Trindade, F.R. Aguirre, N. Added, M.A. Rizzutto, M.H. Tabacniks, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. (2016)Google Scholar
  42. 42.
    D. Mijatovic, A. Brinkman, H. Hilgenkamp, H. Rogalla, G. Rijnders, D.H.A. Blank, Appl. Phys. A 79, 1243 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    COMSOL Multiphysics, Manual (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nuclear and Energy Research InstituteIPEN-CNEN/SPSão PauloBrazil

Personalised recommendations