Advertisement

Applied Physics A

, 125:72 | Cite as

Investigation on mechanism and microwave absorption properties of Ti3SiC2/nano-Cu powders

  • Yi LiuEmail author
  • Yang Xu
  • Xiaolei Su
  • Xinhai He
  • Jie Xu
  • Yinhu Qu
  • Junbo Wang
Article
  • 84 Downloads

Abstract

In this work, Ti3SiC2/nano-Cu powders were synthesized by two different routes: mechanical ball-milling and electroless-plating process. The phase composition was identified by XRD and the microstructure was observed by SEM. Both the real and imaginary parts of complex permittivity for Ti3SiC2/nano-Cu powders prepared by electroless-plating process are higher because of the uniformly dispersing nano-Cu particles. In addition, the influences of concentration on the dielectric and microwave absorption properties were also investigated. As the content of Ti3SiC2/nano-Cu rises from 40 to 70 wt%, the real part of complex permittivity increases from 8.81 to 7.37 to 24.73–20.24, while the imaginary part enhances from 0.78–1.65 to 8.02–7.71 in the frequency range of 8.2–12.4 GHz. The most favorable absorption performance is obtained for the Ti3SiC2/nano-Cu/paraffin mixture containing 60 wt% filler with a thickness of 1.8 mm. The effective absorption bandwidth below − 10 dB is obtained in 9.2–12.2 GHz with a minimum reflection loss of − 20.42 dB at 10.88 GHz.

Notes

Acknowledgements

This work was supported by the PHD Start-up Fund of XPU (BS1615), the Young Talent fund of University Association for Science and Technology in Shaanxi, China (no. 20170521), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program no. 18JK0353), Scientific and Technological Innovation Guidance Project of Xi’an Science and Technology Bureau (201805030YD8CG14(14)), Shaanxi Special Talents Support Plan, Shaanxi University Youth Outstanding Talents Support Plan.

References

  1. 1.
    X. Liu, Z. Zhang, Y. Wu, Compos. Part B 42, 326 (2011)CrossRefGoogle Scholar
  2. 2.
    G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, J. Phys. Chem. C 116, 9197 (2012)CrossRefGoogle Scholar
  3. 3.
    Z. Fan, G. Luo, Z. Zhang, L. Zhou, F. Wei, Mater. Sci. Eng. B 132, 86 (2006)CrossRefGoogle Scholar
  4. 4.
    V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Carbon 50, 2204 (2012)Google Scholar
  5. 5.
    X. Su, J. Zhang, Y. Jia, Y. Liu, J. Xu, J. Wang, J. Alloys Compd. 695, 1424 (2017)Google Scholar
  6. 6.
    L. Zhou, W. Zhou, J. Su, F. Luo, D. Zhu, Y. Dong, Appl. Surf. Sci. 258, 2694 (2012)ADSGoogle Scholar
  7. 7.
    L. Zhou, S. Cui, Y. Zhai, F. Luo, Y. Dong, Ceram. Int. 41, 14912 (2015)Google Scholar
  8. 8.
    D.L. Zhao, F. Luo, W.C. Zhou, J. Alloys Compd. 490, 192 (2010)Google Scholar
  9. 9.
    X. Su, Y. Jia, J. Wang, J. Xu, X. He, C. Fu, S. Liu, Ceram. Int. 39, 3654 (2013)Google Scholar
  10. 10.
    Z. Li, W. Zhou, T. Lei, F. Luo, Y. Huang, Q. Cao, J. Alloys Compd. 475, 508 (2009)Google Scholar
  11. 11.
    R. Wu, Z. Yang, M. Fu, K. Zhou, J. Alloys Compd. 687, 836 (2016)Google Scholar
  12. 12.
    R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Prog. Mater Sci. 72, 20 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Wu, K. Zhou, Z. Yang, X. Qian, J. Wei, L. Liu, Y. Huang, L. Kong, L. Wang, Cryst. Eng. Commun. 15, 575 (2013)Google Scholar
  14. 14.
    Q. Wen, W. Zhou, J. Su, Y. Qing, F. Luo, D. Zhu, J. Alloys Compd. 666, 364 (2016)CrossRefGoogle Scholar
  15. 15.
    Z. Huang, W. Zhou, X. Tang, J. Zhu, J. Alloys Compd. 509, 1920–1923 (2011)CrossRefGoogle Scholar
  16. 16.
    Z.M. Sun, Int. Mater. Rev. 56, 156 (2011)CrossRefGoogle Scholar
  17. 17.
    M.W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc. 79, 1955 (1996)Google Scholar
  18. 18.
    R. Radhakrishnan, J.J. Williams, M. Akinc, J. Alloys Compd. 285, 87 (1999)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, F. Luo, W. Zhou, D. Zhu, J. Alloys Compd. 576, 46 (2013)Google Scholar
  20. 20.
    Z. Li, X. Wei, F. Luo, W. Zhou, Y. Hao, Ceram. Int. 40, 2548 (2014)Google Scholar
  21. 21.
    J. Su, W. Zhou, Y. Liu, Y. Qing, F. Luo, D. Zhu, Surf. Coat. Technol. 270, 45 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, Y. Li, F. Luo, X. Su, J. Xu, J. Wang, X. He, Y. Qu, J. Alloys Compd. 715, 26 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, J. Mater. Chem. A 2, 16407 (2014)Google Scholar
  24. 24.
    D.L. Zhao, X. Li, Z.M. Shen, Compos. Sci. Technol. 68, 2906 (2008)Google Scholar
  25. 25.
    M. Zong, Y. Huang, H. Wu, Y. Zhao, P. Liu, L. Wang, Mater. Lett. 109, 114 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, X. Jian, X. Su, F. Luo, J. Xu, J. Wang, X. He, Y. Qu, J. Alloys Compd. 740, 74 (2018)CrossRefGoogle Scholar
  27. 27.
    C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, P. Xu, J. Alloys Compd. 506, 96 (2010)CrossRefGoogle Scholar
  28. 28.
    L. Zhang, H. Zhu, Mater. Lett. 63, 273 (2009)Google Scholar
  29. 29.
    H. Wu, L. Wang, S. Guo, Z. Shen, Appl. Phys. A 108, 443 (2012)CrossRefADSGoogle Scholar
  30. 30.
    Z.F. Zhang, Z.M. Sun, H. Hashimoto, T. Abe, J. Am. Ceram. Soc. 86, 435 (2003)Google Scholar
  31. 31.
    J.F. Li, T. Matsuki, R. Watanabe, J. Am. Ceram. Soc. 88, 1320 (2005)Google Scholar
  32. 32.
    T.L. Ngai, Y. Kuang, Y. Li, Ceram. Int. 38, 468 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu, J. Magn. Magn. Mater. 365, 129 (2014)CrossRefADSGoogle Scholar
  34. 34.
    Y.Z. Wang, G.W. Qiao, X.D. Liu, B.Z. Ding, Z.Q. Hu, Mater. Lett. 17, 153 (1993)CrossRefGoogle Scholar
  35. 35.
    N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys. D Appl. Phys. 14, 3221 (2002)Google Scholar
  36. 36.
    X. Huang, J. Zhang, M. Lai, T. Sang, J. Alloys Compd. 627, 370 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Sun, H. Xu, Y. Shen, H. Bi, W. Liang, R.B. Yang, J. Alloys Compd. 548, 21 (2013)CrossRefGoogle Scholar
  38. 38.
    B.F. Zou, T.D. Zhou, J. Hu, J. Magn. Magn. Mater. 335, 19 (2013)CrossRefADSGoogle Scholar
  39. 39.
    H. Zhao, Z. Zhu, C. Xiong, X. Xu, Q. Lin, J. Magn. Magn. Mater. 422, 404 (2017)CrossRefADSGoogle Scholar
  40. 40.
    G. Bo, Q. Liang, W. Jianbo, L. Qingfang, L. Fashen, F. Jie, X. Desheng, J. Phys. D Appl. Phys. 41, 235005 (2008)CrossRefGoogle Scholar
  41. 41.
    Z. Qiao, S. Pan, J. Xiong, L. Cheng, Q. Yao, P. Lin, J. Magn. Magn. Mater. 423, 200 (2017)CrossRefADSGoogle Scholar
  42. 42.
    M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Chem. Eng. J. 304, 560 (2016)CrossRefGoogle Scholar
  43. 43.
    Z. Ma, R. Zhao, X. Yang, J. Wei, F. Meng, X. Liu, Mater. Lett. 69, 32 (2012)CrossRefGoogle Scholar
  44. 44.
    P. Bhattacharya, G. Hatui, A. Mandal, C.K. Das, R. Kumar, T.C. Shami, J. Alloys Compd. 590, 338 (2014)CrossRefGoogle Scholar
  45. 45.
    V. Sunny, D.S. Kumar, P. Mohanan, M.R. Anantharaman, Mater. Lett. 64, 1130–1132 (2010)CrossRefGoogle Scholar
  46. 46.
    C. Dan, X. Liu, R. Yu, J. Ye, Y. Shi, Compos. Part A 89, 37 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Xi’an Polytechnic UniversityXi’anPeople’s Republic of China

Personalised recommendations