Advertisement

Applied Physics A

, 125:68 | Cite as

Synthesis and characterization of La- and Ce-codoped polycrystal ZnO prepared by hydrothermal method for 1,2-propanediol

  • Wenrui Lu
  • Dachuan ZhuEmail author
Article
  • 60 Downloads

Abstract

La/Ce-codoped ZnO (La/Ce–ZnO)-based gas sensors are successfully prepared by a simple mild hydrothermal method. And the structures, morphologies and sensing properties are examined by XRD, SEM and XPS, respectively. The 1,2-propanediol gas-sensing analysis reveals that the La/Ce–ZnO-based gas sensor displays the highest response compared with La-doped ZnO and Ce-doped ZnO sensors. La/Ce–ZnO-based gas sensor exhibits an excellent response (681) and possesses good response and recovery property of 11 and 45 s to 100 ppm 1,2-propanediol at 240 °C, respectively. The mechanism of gas sensing and enhanced gas response of La/Ce–ZnO is discussed.

References

  1. 1.
    N.F. Hamedani, A.R. Mahjoub, A.A. khodadadi, Y. Mortazavi, CeO2 doped ZnO flower-like nanostructure sensor selective to ethanol in presence of CO and CH4. Sens. Actuators B Chem. 169, 67–73 (2012)CrossRefGoogle Scholar
  2. 2.
    X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures. Sens. Actuators B Chem. 213, 222–233 (2015)CrossRefGoogle Scholar
  3. 3.
    F. Gao, G. Qin, Y. Li, Q. Jiang, L. Luo, K. Zhao, Y. Liu, H. Zhao, One-pot synthesis of La-doped SnO2 layered nanoarrays with an enhanced gas-sensing performance toward acetone. RSC Adv. 6, 10298–10310 (2016)CrossRefGoogle Scholar
  4. 4.
    X.F. Chu, X.H. Zhu, Y.P. Dong, X.T. Ge, S.Q. Zhang, W.Q. Sun, Acetone sensors based on La3+ doped ZnO nano-rods prepared by solvothermal method. J. Mater. Sci. Technol. 28, 200–204 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Xu, A.L. Rosa, T. Frauenheim, R.Q. Zhang, S.T. Lee, Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires. Appl. Phys. Lett. 91, 031914 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S.P. Huang, H. Xu, I. Bello, R.Q. Zhang, Tuning electronic structures of ZnO nanowires by surface functionalization a first-principles study. J. Phys. Chem. C 114, 8861–8866 (2010)CrossRefGoogle Scholar
  7. 7.
    L.W. Wang, Y.F. Kang, X.H. Liu, S.M. Zhang, W.P. Huang, S.R. Wang, ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B Chem. 162, 237–243 (2012)CrossRefGoogle Scholar
  8. 8.
    S.Q. Tian, Y.P. Zhang, D.W. Zeng, H. Wang, N. Li, C.S. Xie, C.X. Pan, X.J. Zhao, Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties. Phy. Chem. Chem. Phys. 17, 27437–27445 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Tian, Y. Zhang, D. Zeng, H. Wang, N. Li, C. Xie, C. Pan, X. Zhao, Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties. Phys. Chem. Chem. Phys. 17, 27437–27445 (2015)CrossRefGoogle Scholar
  10. 10.
    X.J. Wang, W. Wang, Y.L. Liu, Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO. Sens. Actuators B Chem. 168, 39–45 (2012)CrossRefGoogle Scholar
  11. 11.
    S.W. Choi, S.S. Kim, Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization. Sens. Actuators B Chem. 168, 8–13 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Mi, G. Feng, L. Han, T. Guo, Y. Zhu, J. Wang, Modified semi-coke-supported cerium oxide-doped zinc ferrites for the removal of H2S from coal gas. Chem. Eng. Technol. 35, 1626–1631 (2012)CrossRefGoogle Scholar
  13. 13.
    W.R. Lu, D.C. Zhu, X. Xiang, Synthesis and properties of Ce-doped ZnO as a sensor for 1,2-propanediol. J. Mater. Sci. Mater. Electron. 28, 18929–18935 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Wang, X. Kou, L. Zhao, P. Sun, C. Liu, Y. Wang, K. Shimanoe, N. Yamazoe, G. Lu, Flower-like ZnO hollow microspheres loaded with CdO nanoparticles as high performance sensing material for gas sensors. Sens. Actuators B Chem. 250, 692–702 (2017)CrossRefGoogle Scholar
  15. 15.
    N.S. Ramgir, P.K. Sharma, N. Datta, M. Kaur, A.K. Debnath, D.K. Aswal, S.K. Gupta, Room temperature H2S sensor based on Au modified ZnO nanowires. Sens. Actuators B Chem. 186, 718–726 (2013)CrossRefGoogle Scholar
  16. 16.
    K. Shingange, Z.P. Tshabalala, O.M. Ntwaeaborwa, D.E. Motaung, G.H. Mhlongo, Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J. Colloid Interface Sci. 479, 127–138 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    X. Xiang, D. Zhu, D. Wang, Enhanced formaldehyde gas sensing properties of La-doped SnO2 nanoparticles prepared by ball-milling solid chemical reaction method. J. Mater. Sci. Mater. Electron. 27, 7425–7432 (2016)CrossRefGoogle Scholar
  18. 18.
    A.A. Yadav, A.C. Lokhande, P.A. Shinde, J.H. Kim, C.D. Lokhande, CO2 gas sensing properties of La2O3 thin films deposited at various substrate temperatures. J. Mater. Sci. Mater. Electron. 28, 13112–13119 (2017)CrossRefGoogle Scholar
  19. 19.
    H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Aygun, D. Cann, Response kinetics of doped CuO/ZnO heterocontacts. J. Phys. Chem. B 109, 7878–7882 (2005)CrossRefGoogle Scholar
  21. 21.
    C. Ge, C. Xie, S. Cai, Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating. Mater. Sci. Eng. B 137, 53–58 (2007)CrossRefGoogle Scholar
  22. 22.
    C.S. Yang, J.H. Chen, S.J. Dai, Application of ceria and lanthana in catalyst for cleansing exhaust gas of car. J. Rare Earth 22, 232–235 (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Material Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations