Applied Physics A

, 125:86 | Cite as

Preparation and characterization of silver-doped graphene-reinforced silver matrix bulk composite as a novel electrical contact material

  • Hui ZhangEmail author
  • Xianhui WangEmail author
  • Yapeng Li
  • Changsheng Guo
  • Changming Zhang


The incorporation of graphene into silver nanopowder to prepare their bulk composite with enhanced electrical and mechanical properties is investigated. The silver-doped graphene composite (GNs–Ag) is introduced as a reinforcing phase. Silver nanopowder and GNs–Ag composite are ultrasonically mixed and plasma-sintered to prepare GNs–Ag reinforced silver matrix bulk composite. The phase structure, micromorphology, chemical state of elements of the GNs–Ag nanoparticles was analyzed in detailed. Meanwhile, micromorphology and electrical properties of the sintered bulk composites are also measured. The results showed that graphene oxide (GO) and Ag ions are simultaneously reduced by hydrazine hydrate during the reaction. Ag nanoparticles (AgNP) presents the uniformly distribution on the surface of graphene sheets. The Raman spectrum is significantly enhanced compared with that of GO due to the presence of AgNP in the GNS–Ag nanoparticles. It is observed that C/O mass ratio demonstrates an increasing trend from 1.84 in graphene oxide to 6.29 in the composites materials. Compared to International Annealed Copper Standard, this composite material possesses an electrical conductivity of 92.6%, a density of 9.59 g cm−3, and a hardness of 46.12 HV. This phenomenon can be explained as that grain boundaries will be formed at the grain boundaries of silver due to the addition of graphene. In addition, it is found that the resistance of the GNs–Ag/n-Si (111) Schottky contact is lower than Ag/n-Si (111) Schottky contact.



This research was supported by the National Natural Science Foundation of China (Grant no. 51201094). We thank Ningbo Xianchang Electronic Technology Co. Ltd. of China for equipment support.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science. 306, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Zhu, H. Cui, X. Meng, J. Zheng, P. Yang, L. Li, Z. Wang, S. Jia, Z. Zhu, ACS Appl. Mater. Interfaces. 8, 6481 (2016)CrossRefGoogle Scholar
  3. 3.
    H.J. Cui, H.M. Yu, J.F. Zheng, Z.J. Wang, Y.Y. Zhu, S.P. Jia, J. Jia, Z.P. Zhu, Nanoscale. 8, 2795 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, W.W. Yu, ACS Appl. Mater. Interfaces 7, 21082 (2015)CrossRefGoogle Scholar
  5. 5.
    W.K.C. Yung, G.j. Li, H.M. Liem, H.S. Choy, Z.X. Cai, J. Mater. Chem. C. 3, 11294 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Tan, X. Huang, H. Zhang, Mater. Today. 16, 29 (2013)CrossRefGoogle Scholar
  7. 7.
    H.G.P. Kumar, M.A.Xavior, Procedia Eng. 97, 1033 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake, A.A. Balandin, Nanoscale. 8, 14608–14616 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Scr. Mater. 66, 594 (2012)CrossRefGoogle Scholar
  11. 11.
    Z. Hu, F. Chen, D. Lin, Q. Nian, P. Parandoush, X. Zhu, Z. Shao, G.J. Cheng, Nanotechnology. 28, 445705 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Prog. Mater. Sci. 90, 75 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, X. Wang, Compos. Part B. 60, 111 (2014)CrossRefGoogle Scholar
  14. 14.
    Q. He, D.O. Kiesewetter, Y. Qu, X. Fu, J. Fan, P. Huang, Y. Liu, G. Zhu, Y. Liu, Z. Qian, X. Chen, Adv. Mater. 27, 6537 (2016)CrossRefGoogle Scholar
  15. 15.
    W. Yang, X. Xu, Y. Gao, Z. Li, C. Li, W. Wang, Y. Chen, G. Ning, L. Zhang, F. Yang, S. Chen, A. Wang, J. Kong, Y. Li, Nanoscale. 8, 13059 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    D. Lin, M. Motlag, M. Saei, S. Jin, R.M. Rahimi, D. Bahr, G.J. Cheng, Acta Mater. 150, 360–372 (2018)CrossRefGoogle Scholar
  17. 17.
    S.K. Ameri, P.K. Singh, S. Sonkusale, Anal. Chim. Acta. 934, 212 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Murphy, L. Huang, P.V. Kamat, J. Phys. Chem. C 117, 4740 (2013)CrossRefGoogle Scholar
  19. 19.
    Z. Deng, J. Zhou, L. Miao, C. Liu, Y. Peng, L. Sun, S. Tanemura, J. Mater. Chem. A 5, 7691 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Wang, J. Li, M. Gao, X. Zhang, Nanoscale. 9, 10750 (2017)CrossRefGoogle Scholar
  21. 21.
    P.J. Wang, L.Q. Wang, Q. Sun, S.B. Qiu, Y. Liu, X.B. Zhang, X.L. Liu, L.H. Zheng, Mater. Lett. 183, 61 (2016)CrossRefGoogle Scholar
  22. 22.
    A.F. Fonseca, T. Liang, D. Zhang, K. Choudhary, S.B. Sinnott, Comput. Mater. Sci. 114, 236 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Li, H. Che, X. Liu, S. Liang, H. Xie, J. Mater. Sci. 49, 3725 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    P.G. Slade, Electrical contacts: principles and applications (Crc Press, Boca Raton, 2017)Google Scholar
  25. 25.
    Z. Lin, S. Liu, X. Sun, M. Xie, J. Li, X. Li, Y. Chen, J. Chen, D. Huo, M. Zhang, J. Alloy Compd. 588, 30 (2014)CrossRefGoogle Scholar
  26. 26.
    S.P. Kumar, R. Parameshwaran, A. Ananthi, J.J.J. Sam, Arch. Metall. Mater. 62, 1895 (2017)CrossRefGoogle Scholar
  27. 27.
    G.M. Zeer, E.G. Zelenkova, O.V. Belousov, V.V. Beletskii, S. Nikolaev, O. Ledyaeva, Phys. Met. Metallog. 118, 890 (2017)CrossRefGoogle Scholar
  28. 28.
    W.W. Wang, W.F. Wang, X.L. Chen, Y.C. Wu, L.S. Dong, Rare Metal Mater. Eng. 44, 2138–2142 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Cui, L.D. Wang, B. Li, G.J. Cao, W.D. Fei, Acta Metall. Sin. 27, 937943 (2014)Google Scholar
  30. 30.
    S.C. Tjong, Mater, Sci. Eng. R Rep. 74, 281 (2013)CrossRefGoogle Scholar
  31. 31.
    W.R. Matizamhuka, J. S. Afr. Inst. Min. Metall. 116, 1171 (2016)CrossRefGoogle Scholar
  32. 32.
    S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Mater. Sci. Eng. A 528, 7933 (2011)CrossRefGoogle Scholar
  33. 33.
    J.H. Wu, H.L. Zhang, Y. Zhang, X.T. Wang, Mater. Des. 41, 344 (2012)CrossRefGoogle Scholar
  34. 34.
    K. Kondoh, T. Threrujirapapong, J. Umeda, B. Fugetsu, Compos. Sci. Technol. 72, 1292 (2012)CrossRefGoogle Scholar
  35. 35.
    J. Liu, H. Jan, M.J. Reece, K. Jiang, J. Eur. Ceram. Soc. 32, 4185 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Liu, H. Yan, K. Jiang, Ceram. Int. 39, 6215 (2013)CrossRefGoogle Scholar
  37. 37.
    Y. Mei, P.R. Liu, Y.J. Sun, J.H. Liu, J.W. An, S.M. Li, J. Inorg, Mater. 27, 89 (2012)Google Scholar
  38. 38.
    R. Pasricha, S. Gupta, A.K. Srivastava, Small. 5, 2253 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Shen, M. Shi, N. Li, B. Yan, H. Ma, Y. Hu, M. Ye, Nano Res. 3, 339 (2010)CrossRefGoogle Scholar
  40. 40.
    H. Dong, B. Wen, R. Melnik. Sci Rep. 4, 7037 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    N. Khosravian, M.K. Samani, G.C. Loh, G. Chen, D. Baillargeat, B. Tay. Comput. Mater. Sci. 79, 132135 (2013)CrossRefGoogle Scholar
  42. 42.
    S.Y. Huang, K. Zhang, M.M.F. Yuen, X.Z. Fu, R. Sun, C.P. Wong. RSC Adv. 4, 34156 (2014)CrossRefGoogle Scholar
  43. 43.
    C.J. Fu, M. Xie, J.W. Du, Y.F. Yang, M. Zhao, S.B. Wang, J.M. Zhang, Y.C. Yang, Y.T. Chen, Mater. Rev. 28, 22 (2014)Google Scholar
  44. 44.
    R.J. Ma, Rare Metals Cem. Carbides. 4, 28 36 (2008)Google Scholar
  45. 45.
    G. Ma, X. Sun, Rare Metal Lett. 26, 14 (2007)Google Scholar
  46. 46.
    X.C. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, Nano Lett. 12, 2745–2750 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    H.V. Wenckstern, E.M. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J. Lenzner, V. Gottschalch, R. Pickenhain, M. Grundmann, Appl. Phys. Lett. 84, 79–81 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    S.K. Cheung, Phys. Lett. 49, 85–87 (1986)Google Scholar
  49. 49.
    H. Kim, H. Kim, D.W. Kim, J. Korean, Phys. Soc. 63, 2034–2038 (2013)Google Scholar
  50. 50.
    I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, J. Appl. Phys. 113, 332001 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringXi’an University of TechnologyXi’anChina
  2. 2.School of Materials Science and EngineeringShanxi University of TechnologyHanzhongChina
  3. 3.School of Mechanical EngineeringShaanxi University of TechnologyHanzhongChina

Personalised recommendations