Advertisement

Applied Physics A

, 125:79 | Cite as

Nonlinear behavior of the current–voltage characteristics for erbium-doped PVA polymeric composite films

  • H. I. Elsaeedy
  • H. Elhosiny AliEmail author
  • H. Algarni
  • I. S. Yahia
Article
  • 28 Downloads

Abstract

The universal casting method for an aqueous solution has been used to synthesize PVA solid samples with 0, 0.037, 0.37, 3.7, 18.5, and 37 wt% of Er3+-ions. The semi-crystalline nature of solid films was proved by analyzing the pattern of the XRD, while the complex formation has been confirmed via FTIR spectroscopy. SEM shows the formation of clusters of the Er3+-ions on the superficiality of PVA. The optical parameters, dielectric permittivity, and IV characteristics have been studied. The incident light is completely absorbed in UV-region by PVA: 37 wt% Er3+-sample. Moreover, the indirect energy, Eg1, gap decreased from 4.98 to 4.74 eV, whereas the index of refraction increased from 1.53 to 2.85 with Er3+-ions concentration. Dielectric permittivity decreases with a high proportion of Er3+-ions in PVA and an interesting nonlinear behavior of IV characteristics is observed in PVA: 37 wt% Er3+-sample. The characteristics of synthesized materials revealed that it can be used for manufacturing cheaper varistor device, UV-protector, and optoelectronic applications.

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P.1/59/39.

References

  1. 1.
    B. Adhikari, S. Majumdar, Prog. Poly. Sci. 29, 699–766 (2004)CrossRefGoogle Scholar
  2. 2.
    H. Elhosiny Ali, Y. Khairy, H. Algarni, H.I. Elsaeedy, A.M. Alshehri, I.S. Yahia, J. Mater. Sci. Mater. Electron. 29, 20424–20432 (2018)CrossRefGoogle Scholar
  3. 3.
    M.N. Muralidharan, S. Mathew, A. Seema, P. Radhakrishnan, T. Kurian, Mater. Chem. Phys. 171, 367–373 (2016)CrossRefGoogle Scholar
  4. 4.
    Q. Li, T. Li, J. Wu, J. Phys. Chem. B. 105, 12293–12296 (2001)CrossRefGoogle Scholar
  5. 5.
    M.A.F. Basha, Polym. J. 42, 728–734 (2010)CrossRefGoogle Scholar
  6. 6.
    M.O. Reddy, B.C. Babu, Ind. J. Mater. Sci. 8, 927364 (2015)Google Scholar
  7. 7.
    S. DÖkme, I. Altindal, Uslu, J. Appl. Polym. Sci. 125(2), 1185 (2012)CrossRefGoogle Scholar
  8. 8.
    C.V. Subba Reddy, X. Han, Q.Y. Zhu, L.-Q. Mai, W. Chen, Microelectron. Eng. 83, 281 (2006)CrossRefGoogle Scholar
  9. 9.
    T.A. Hanafy, J. Appl. Phys. 112, 034102 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Chen, S. Zhou, F. Li, F. Li, Y. Chen, J. Lumin 131, 701–704 (2011)CrossRefGoogle Scholar
  11. 11.
    M.M. Lezhnina, U.H. Kynast, Opt. Mater. 33, 4–13 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, G.N. Kumaraswamy, Appl. Phys. A Mater. Sci. Process. 87, 797–805 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    L. Ke, M. Hu, X. Ma, J. Matt. 726314, 5 (2013)Google Scholar
  14. 14.
    L.-M. Zhao, X. Shao, Y.-B. Yin, W.-Z. Li, Mater. Res. Bull. 44, 1334–1338 (2009)CrossRefGoogle Scholar
  15. 15.
    J.K. Rao, A. Raizada, D. Ganguly, M.M. Nankad, S.V. Satayanarayana, G.M. Madhu, J. Mater. Sci. 50, 7064–7074 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, J. Alloy. Compd. 538, 212–219 (2012)CrossRefGoogle Scholar
  17. 17.
    L. Alexander, H.P. Klug, J. Appl. Phys. 21, 137–142 (1950)ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Meftah, E. Gharibshahi, N. Soltani, W.M.M. Yunus, E. Saion, Polymers 6, 2435–2450 (2014)CrossRefGoogle Scholar
  19. 19.
    R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, J. Opt. Mater. 52, 237–241 (2016)CrossRefGoogle Scholar
  20. 20.
    R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, Appl. Surf. Sci. 343, 160–165 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    J.K. Rao, A. Raizada, D. Ganguly, M.M. Mankad, S.V. Satayanarayana, G.M. Madhu, J. Mater. Sci. 50, 7064–7074 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    S. More, R. Dhokne, S. Moharil, Polym. Bull. 75, 909–923 (2018)CrossRefGoogle Scholar
  23. 23.
    B. Karthikeyan, Chem. Phys. Lett. 432, 513–517 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    K.H. Mahmoud, Z.M. El Bahy, A.I. Hanafy, J. Phys. Chem. Solid. 72, 1057–1065 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, Mater. Res. Bull. 51, 438–446 (2014)CrossRefGoogle Scholar
  26. 26.
    I.S. Yahia, S.M. Keshk, Opt. Laser Technol. 90, 197–200 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    A.M. El Sayed, W.M. Morsi, J. Mater. Sci. 49, 5378–5387 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    T.A. Hamdalla, T.A. Hanafy, A.E. Bekheet, J. Spect. 204867, 7 (2015)Google Scholar
  29. 29.
    S. Xu, Z. Yang, S. Dai, J. Yang, L. Hu, Z. Jiang, J. Alloys Compd. 361, 313–319 (2003)CrossRefGoogle Scholar
  30. 30.
    N.M. Shah, J.R. Ray, K.J. Patel, V.A. Kheraj, M.S. Desai, C.J. Panchal, B. Rehani, Thin Solid Films 517, 3639–3644 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    A. Tataroglu, S. Altındal, M.M. Bulbul, Microelectron. Eng. 81, 140–149 (2005)CrossRefGoogle Scholar
  32. 32.
    A.M. El Sayed, S. El-Gamal, W.M. Morsi, Gh. Mohammed, J. Mater. Sci. 50, 4717–4728 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • H. I. Elsaeedy
    • 1
  • H. Elhosiny Ali
    • 1
    • 2
    Email author
  • H. Algarni
    • 1
  • I. S. Yahia
    • 1
    • 3
  1. 1.Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceZagazig UniversityZagazigEgypt
  3. 3.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab, Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations