Advertisement

Applied Physics A

, 125:136 | Cite as

Efficient orbital angular momentum vortex beam generation by generalized coding metasurface

  • Qiqi Zheng
  • Yongfeng LiEmail author
  • Yajuan Han
  • Maochang Feng
  • Yongqiang Pang
  • Jiafu Wang
  • Hua Ma
  • Shaobo Qu
  • Jieqiu ZhangEmail author
Article
  • 30 Downloads

Abstract

A method to efficiently generate orbital angular momentum (OAM) vortex beam is proposed by introducing generalized coding metasurface (CM). Firstly, a linearly polarized (LP) cross-polarization transmission unit cell is employed as the coding element. Then, the generalized CM composed of sectorial coding elements can be considered as a bridge linking mode number of OAM and beam divergence with coding sequences. Different mode numbers OAM is generated by CMs with different coding sequences under y-polarized wave normal incidence. Both theoretical analysis and simulated results reveal that the proposed CM can achieve flexible control of the OAM vortex beam.

Notes

Acknowledgements

The authors are grateful to the supports from the National Natural Science Foundation of China under Grant Nos. 61501503, 61471388, and 61331005, and the Natural Science Foundation of Shaanxi Province under Grant No. 2017JM6005.

References

  1. 1.
    L. Allen, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    S. Franke-Arnold, Advances in optical angular momentum. Laser Photon. Rev. 2, 299–313 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    G. Gibson, Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    G.C.G. Berkhout, Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A. Vaziri, Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89, 240401 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    J.T. Barreiro, Beating the channel capacity limit for linear photonic superdense coding. Nature Phys. 4, 282 (2008)CrossRefGoogle Scholar
  7. 7.
    M.W. Beijersbergen, Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Comm. 112, 321–327 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    N.R. Heckenberg, Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    N.F. Yu, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    F.Y. Yue, Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558–1563 (2016)CrossRefGoogle Scholar
  11. 11.
    E. Karimi, Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S.X. Yu, Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett. 108, 121903 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    S.X. Yu, Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett. 108, 241901 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    T.J. Cui, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014)CrossRefGoogle Scholar
  15. 15.
    T.J. Cui, Information metamaterials and metasurfaces. J. Mater. Chem. C 5, 3644–3668 (2017)CrossRefGoogle Scholar
  16. 16.
    Q.Q. Zheng, Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase. Sci. Rep. 7, 43543 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    M.C. Feng, Ultra-wideband and high-efficiency transparent coding metasurfaces. Appl. Phys. A 124, 630 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    M.C. Feng, Two-dimensional coding phase gradient metasurface for RCS reduction. J. Phys. D Appl. Phys. 51, 375103 (2018)CrossRefGoogle Scholar
  19. 19.
    Y.F. Li, Broadband unidirectional cloaks based on flat metasurface focusing lenses. J. Phys. D Appl. Phys. 48, 335101 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M.C. Feng, Wide-angle flat metasurface corner reflector. Appl. Phys. Lett. 113, 143504 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Y.F. Li, Wideband polarization conversion with the synergy of waveguide and spoof surface plasmon polariton modes. Phys. Rev. Appl. 10, 064002 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Y.F. Li, Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Appl. Phys. Lett. 104, 221110 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Y.F. Li, k-dispersion engineering of spoof surface plasmon polaritons for beam steering. Opt. Express 24, 842–852 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Y.F. Li, High-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons. Opt. Express 24, 24938–24946 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, Science 340, 1304 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    L. Zhang, Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces. ACS Appl. Mater. Interfaces 9, 36447–36455 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Liang, Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials. Adv. Opt. Mater. 3, 1374–1380 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Zhang, Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves. Adv. Funct. Mater. 2018, 1802205 (2018)CrossRefGoogle Scholar
  29. 29.
    L. Zhang, Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qiqi Zheng
    • 1
  • Yongfeng Li
    • 1
    Email author
  • Yajuan Han
    • 2
  • Maochang Feng
    • 1
  • Yongqiang Pang
    • 1
  • Jiafu Wang
    • 1
  • Hua Ma
    • 1
  • Shaobo Qu
    • 1
  • Jieqiu Zhang
    • 1
    Email author
  1. 1.Department of Basic SciencesAir Force Engineering UniversityXi’anChina
  2. 2.School of Physics and Optoelectronic EngineeringXidian UniversityXi’anChina

Personalised recommendations