Applied Physics A

, 125:100 | Cite as

The photo-switch effect and the energy-level population change of Li+ doping in Yb3+/Er3+ co-doped Y2O3 upconversion films

  • Boxu Xu
  • Juncheng Liu
  • Kaishun Zou


Li+–Er3+/Yb3+ co-doped Y2O3 upconversion films were prepared via a sol–gel method and spin coating. Li+ doping resulted in better crystallinity and larger crystal grains. All the films had purple, green and red upconversion emission bands. Li+ doping decreased the lattice symmetry of the matrix and enhanced energy transfer, and green and red emissions improved by more than 100 times. Meanwhile, Li+ doping also increased the lifetime of both the green and red emissions significantly via reducing the probability of non-radiation transition. Moreover, the 4S3/2 energy level tends to be populated with increasing Li+, the matrix phonon energy change and the fluorescence quenching causing it. When the mole ratio of rare earth ions to Li+ was over 1:2, the purple emission shifted from 436 to 409 nm. Here, Li+ played a switching role in the conversion of these two channels. Li+ doping up to a critical concentration value changed the matrix phonon energy. The match of the phonon energy with the energy gap between 2G7/22H9/2 and that of 2G7/24F3/2 was the reason.



This work was supported by the National Natural Science Foundation of China (Grant No. 51352002).


  1. 1.
    P. Du, L. Luo, J.S. Yu, Upconversion emission and cathodoluminescence of Er3+ -doped NaYbF4 nanoparticles for low-temperature thermometry and field emission displays. Appl. Phys. A 123, 157 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    P. Du, J.S. Yu, Near-infrared light-triggered visible upconversion emissions in Er3+/Yb3+-codoped Y2Mo4O15 microparticles for simultaneous noncontact optical thermometry and solid-state lighting. Ind. Eng. Chem. Res. 57, 13077–13086 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Du, P. Zhang, S.H. Kang, J.S. Yu, Hydrothermal synthesis and application of Ho3+-activated NaYbF4 bifunctional upconverting nanoparticles for in vitro cell imaging and latent fingerprint detection. Sens. Actuator B Chem. 252, 584–591 (2017)CrossRefGoogle Scholar
  4. 4.
    Z. Zhang, Y. Zhang, C. Wang, Z. Feng, W. Zhang, H. Xia, White light emission characteristics of Tb3+/Sm3+ co-doped glass ceramics containing YPO4 nanocrystals. J. Mater. Sci. Technol. 33, 432–437 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Jiang, H. Xia, J. Zhang, S. Yang, H. Jiang, B. Chen, Growth and optical spectra of Tb3+/Eu3+ co-doped cubic NaYF4 single crystal for white light emitting diode. J. Mater. Sci. Technol. 31, 1232–1236 (2015)CrossRefGoogle Scholar
  6. 6.
    E.J. Majdak-Paredes, M.V. Schaverien, P. Szychta, C. Raine, J.M. Dixon, Intra-operative digital specimen radiology reduces RE–operation rates in therapeutic mammaplasty for breast cancer. Breast 24, 556–559 (2015)CrossRefGoogle Scholar
  7. 7.
    H.H. Cheng, W. Lin, Z.Q. Luo, Z.M. Yang, Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate. IEEE J. Sel. Top. Quantum Electron. 24, 6 (2018)CrossRefGoogle Scholar
  8. 8.
    Z.C. Yang, X.D. Wang, Y.C. Wu, X.F. Li, M.S. Chen, Two emission turn-on optical chemosensors for cysteine detection using up-conversion nanocrystals as excitation host: synthesis, characterization and performance. Sens. Actuator B Chem. 255, 1587–1594 (2018)CrossRefGoogle Scholar
  9. 9.
    W.A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, W. Ryba-Romanowski, Influence of excitation wavelengths on up-converted luminescence sensing behavior of Er3+ ions in lead-free germanate glass. J. Lumin. 193, 34–38 (2018)CrossRefGoogle Scholar
  10. 10.
    J.L. Qin, C.F. Hu, B.F. Lei, J.F. Li, Y.L. Liu, S.P. Ye, M.Z. Pan, Temperature-dependent luminescence characteristic of SrSi2O2N2:Eu2+ phosphor and its thermal quenching behavior. J. Mater. Sci.Technol. 30, 290–294 (2014)CrossRefGoogle Scholar
  11. 11.
    L.W. Jiang, Z.H. Wang, Y.P. Chen, P. Chen, L.H. Luo, H.B. Chen, Bright up-conversion emission of Er3+-doped lead-free ferroelectric Na0.5Bi0.5TiO3 single crystal. Mater. Lett. 210, 158–160 (2018)CrossRefGoogle Scholar
  12. 12.
    Y.R. Lu, M.Y. Gou, L.Y. Zhang, L. Li, T.T. Wang, C.G. Wang, Z.M. Su, Facile one-pot synthesis of hollow mesoporous fluorescent Gd2O3:Eu/calcium phosphate nanospheres for simultaneous dual-modal imaging and pH-responsive drug delivery. Dyes Pigment. 147, 514–522 (2017)CrossRefGoogle Scholar
  13. 13.
    W. Xu, Y. Cui, Y.W. Hu, L.J. Zheng, Z.G. Zhang, W.W. Cao, Optical temperature sensing in Er3+-Yb3+ codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation. J. Alloys Compd. 726, 547–555 (2017)CrossRefGoogle Scholar
  14. 14.
    Y.Z. Chen, F. Peng, Q.L. Zhang, W.P. Liu, R.Q. Dou, S.J. Ding, J.Q. Luo, D.L. Sun, G.H. Sun, X.F. Wang, Growth, structure and spectroscopic properties of 1 at.% Er3+: GdTaO4 laser crystal. J. Lumin. 192, 555–561 (2017)CrossRefGoogle Scholar
  15. 15.
    X.J. Xue, T.L. Cheng, T. Suzuki, Y. Ohishi, KY3F10:Er3+/Yb3+ nanocrystals doped laser-induced self-written waveguide for optical amplification in the C-band, in Optical Components and Materials Xiii, ed. by S. Jiang, M.J.F. Digonnet (Spie-Int Soc Optical Engineering, Bellingham, 2016)Google Scholar
  16. 16.
    V.O. Kharchenko, D.O. Kharchenko, V.V. Yanovsky, Nano-sized adsorbate structure formation in anisotropic multilayer system. Nanoscale Res. Lett. 12, 337 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    P.Q. Yang, J.M. Peng, Z.Y. Chu, D.F. Jiang, W.Q. Jin, Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips. Biosens. Bioelectron. 92, 709–717 (2017)CrossRefGoogle Scholar
  18. 18.
    L.I. Fockaert, P. Taheri, S.T. Abrahami, B. Boelen, H. Terryn, J.M.C. Mol, Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules. Appl. Surf. Sci. 423, 817–828 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    H.Y. Lu, H.Y. Hao, H.M. Zhu, G. Shi, Q.D. Fan, Y.L. Song, Y.X. Wang, X.R. Zhang, Enhancing temperature sensing behavior of NaLuF4:Yb3+/Er3+ via incorporation of Mn2+ ions resulting in a closed energy transfer. J. Alloys Compd. 728, 971–975 (2017)CrossRefGoogle Scholar
  20. 20.
    V. Kumar, G. Bullis, G.F. Wang, Investigation of NIR-tO–REd upconversion luminescence mechanism in Y2O3:Er3+, Yb3+ and the effect of co-doping Zn in the matrix. J. Lumin. 192, 982–989 (2017)CrossRefGoogle Scholar
  21. 21.
    P. Deshmukh, S. Satapathy, M.K. Singh, M.P. Kamath, A.K. Karnal, Effect of Er and Dy on IR-visible up-conversion luminescence properties of (Er0.01Dy0.01La0.01Zr0.02Y0.95)2O3 transparent ceramic. Ceram. Int. 43, 14257–14262 (2017)CrossRefGoogle Scholar
  22. 22.
    E. Ballem, A. Azeem, P.R. Rayavarapu, H. Divi, Structural and luminescent studies of erbium-doped CaZrO3 green-emitting nanophosphors. Luminescence 32, 1246–1251 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Sikora, P. Kowalik, J. Mikulski, K. Fronc, I. Kaminska, M. Szewczyk, A. Konopka, K. Zajdel, R. Minikayev, K. Sobczak, W. Zaleszczyk, A. Borodziuk, J. Rybusinski, J. Szczytko, A. Sienkiewicz, T. Wojciechowski, P. Stepien, M. Frontczak-Baniewicz, M. Lapinski, G. Wilczynski, W. Paszkowicz, A. Twardowski, D. Elbaum, Mammalian cell defence mechanisms against the cytotoxicity of NaYF4:(Er,Yb,Gd) nanoparticles. Nanoscale 9, 14259–14271 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Xu, P. Wang, X. Meng, K. Zou, J. Liu, Effects of the Ho3+/Yb3+ concentration ratio on the structure and photoluminescence of ZnO films. J. Lumin. 175, 78–81 (2016)CrossRefGoogle Scholar
  25. 25.
    J.C. Li, S.G. Li, H.F. Hu, F.X. Gan, Emission properties of Yb3+/Er3+ doped TeO2-WO3-ZnO glasses for broadband optical amplifiers. J. Mater. Sci. Technol. 20, 139–142 (2004)Google Scholar
  26. 26.
    X.Y. Zhang, H. Yu, L.Y. Guo, J.N. Jin, Q.X. Li, Y.A. Guo, Y.T. Fu, Y.H. Shi, L.J. Zhao, Comprehensive model and investigation of F ions-induced cubic-to-hexagonal phase transformation in NaYF4. J. Alloys Compd. 728, 1254–1259 (2017)CrossRefGoogle Scholar
  27. 27.
    A.J. Huang, Z.W. Yang, C.Y. Yu, J.B. Qiu, Z.G. Song, Splitting upconversion emission and phonon-assisted population inversion of Ba2Y(BO3)2Cl: Yb3+, Er3+ phosphor. J. Am. Ceram. Soc. 100, 4994–4998 (2017)CrossRefGoogle Scholar
  28. 28.
    W.W. Liu, H.Y. Zhang, H.G. Wang, M. Zhang, M. Guo, Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells. Appl. Surf. Sci. 422, 304–315 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    H. Akazawa, H. Shinojima, Comparative study of visible and infrared photoluminescence resulting from indirect and direct excitation processes of Er3+ ions doped in ZnO host films. J. Appl. Phys. 122, 10 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Xu, J.W. Zhang, H. Zhao, H.B. Sun, C.X. Xu, Enhanced photoluminescence intensity by modifying the surface nanostructure of Nd3+-doped (Pb, La)(Zr, Ti)O3 ceramics. Opt. Lett. 42, 3303–3306 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    S. Khan, H. Choi, S.Y. Lee, K.R. Lee, O.M. Ntwaeaborwa, S. Kim, S.H. Cho, Unexpected roles of interstitially doped lithium in blue and green light emitting Y2O3:Bi3+: a combined experimental and computational study. Inorg. Chem. 56, 12139–12147 (2017)CrossRefGoogle Scholar
  32. 32.
    P.P. Sukul, M.K. Mahata, K. Kumar, NIR optimized dual mode photoluminescence in Nd doped Y2O3 ceramic phosphor. J. Lumin. 185, 92–98 (2017)CrossRefGoogle Scholar
  33. 33.
    F. Auzel, Application des transferts d’énergie résonnants a l’effet laser de verres dopés avec Er3+. Ann. Telecommun. 24, 363–376 (1969)Google Scholar
  34. 34.
    V.V. Ovsyankin, P.P. Feofilov, Mechanism of summation of electronic excitations in activated crystals. Sov. J. Exp. Theor. Phys. Lett. 3, 322 (1966)ADSGoogle Scholar
  35. 35.
    V.E. Karapetyan, B.I. Maksakov, P.P. Feofilov, Absorption and luminescence of divalent samarium in alkali-halide single crystals. Opt. Spectry 14, 441–443 (1963)Google Scholar
  36. 36.
    P.V. Ramakrishna, T.L. Rao, A. Singh, B. Benarji, S. Dash, Structural and photoluminescence behavior of thermally stable Eu3+ activated CaWO4 nanophosphors via Li+ incorporation. J. Mol. Struct. 1149, 426–431 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Y.L. Yan, W. Zhang, B. Ren, L.S. Zhong, Y.H. Xu, Effects of Li+ co-doping on the concentration quenching threshold and luminescence of GdVO4:Eu3+ nanophosphors. Ionics 23, 869–875 (2017)CrossRefGoogle Scholar
  38. 38.
    X.W. Wang, X. Zhang, Y.B. Wang, H.Y. Li, J. Xie, T. Wei, Q.W. Huang, X.J. Xie, L. Huang, W. Huang, Comprehensive studies of the Li+ effect on NaYF4: Yb/Er nanocrystals: morphology, structure, and upconversion luminescence. Dalton Trans. 46, 8968–8974 (2017)CrossRefGoogle Scholar
  39. 39.
    Y.B. Wang, T. Wei, X.W. Cheng, H. Ma, Y. Pan, J. Xie, H.Q. Su, X.J. Xie, L. Huang, W. Huang, Insights into Li+-induced morphology evolution and upconversion luminescence enhancement of KSc2F7:Yb/Er nanocrystals. J. Mater. Chem. C 5, 6 (2017)Google Scholar
  40. 40.
    A.N. Meza-Rocha, B.F. Huerta, U. Caldino, S. Carmona-Tellez, M. Bettinelli, A. Speghini, S. Pelli, G.C. Righini, C. Falcony, Dependence of the up-conversion emission of Li+ co-doped Y2O3:Er3+ films with dopant concentration. J. Lumin. 167, 352–359 (2015)CrossRefGoogle Scholar
  41. 41.
    D. Avram, B. Cojocaru, I. Tiseanu, M. Florea, C. Tiseanu, Down-/Up-conversion emission enhancement by li addition: improved crystallization or local structure distortion? J. Phys. Chem. C 121, 14274–14284 (2017)CrossRefGoogle Scholar
  42. 42.
    A.L. Patterson, The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)ADSCrossRefGoogle Scholar
  43. 43.
    D. Doutt, H.L. Mosbacker, G. Cantwell, J. Zhang, J.J. Song, L.J. Brillson, Impact of near-surface defects and morphology on ZnO luminescence. Appl. Phys. Lett. 94, 252103 (2009)CrossRefGoogle Scholar
  44. 44.
    Q. Zhu, J.G. Li, X. Li, X. Sun, Morphology-dependent crystallization and luminescence behavior of (Y, Eu)2O3 red phosphors. Acta Mater. 57, 5975–5985 (2009)CrossRefGoogle Scholar
  45. 45.
    H. Song, J. Wang, B. Chen, H. Peng, S. Lu, Size-dependent electronic transition rates in cubic nanocrystalline europium doped yttria. Chem. Phys. Lett. 376, 1–5 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    M. Liu, S.W. Wang, D.Y. Tang, L.D. Chen, J. Ma, Preparation and upconversion luminescence of YAG(Y3Al5O12):Yb3+, Ho3+ nanocrystals. J. Rare Earth. 27, 66–70 (2009)CrossRefGoogle Scholar
  47. 47.
    G.Y. Chen, H.C. Liu, G. Somesfalean, Y.Q. Sheng, H.J. Liang, Z.G. Zhang, Q. Sun, F.P. Wang, Enhancement of the upconversion radiation in Y2O3Er3+ nanocrystals by codoping with Li+ ions. Appl. Phys. Lett. 92, 3 (2008)Google Scholar
  48. 48.
    L.D. Sun, C. Qian, C.S. Liao, X.L. Wang, C.H. Yan, Luminescent proper-ties of Li+ doped nanosized Y2O3: Eu. Solid State Commun. 119, 393–396 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    A. Pandey, V.K. Rai, K. Kumar, Influence of Li+ codoping on visible emission of Y2O3: Tb3+, Yb3+ phosphor, Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 619–623 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    T. Fan, Q.Y. Zhang, Z.H. Jiang, The effects of Li on the near-infrared luminescence properties of Nd3+/Li+ codoped Y2O3 nanocrystals. Opt. Commun. 284, 1594–1597 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    Y.F. Bai, Y.X. Wang, G.Y. Peng, K. Yang, X.R. Zhang, Y.L. Song, Enhance upconversion photoluminescence intensity by doping Li+ in Ho3+ and Yb3+ codoped Y2O3 nanocrystals. J. Alloys Compd. 478, 676–678 (2009)CrossRefGoogle Scholar
  52. 52.
    K. Mishra, S.K. Singh, A.K. Singh, S.B. Rai, Frequency upconversion in Er3+ doped Y2O3 nanophosphor: Yb3+ sensitization and tailoring effect of Li+ ion. Mater. Res. Bull. 48, 4307–4313 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations