Applied Physics A

, 125:73 | Cite as

XRD analysis, Raman, AC conductivity and dielectric properties of Co and Mn co-doped SnO2 nanoparticles

  • N. Bhakta
  • P. K. ChakrabartiEmail author


The dielectric behavior, AC conductivity, and optical properties of Mn- and Co co-doping SnO2 nanoparticles were investigated in this paper. Co-doped Sn0.98−xMnxCo0.02O2 (x = 0.01, 0.02, and 0.03) and undoped SnO2 nanoparticles were synthesized by sol–gel method. Pure crystallographic phases of undoped and co-doped samples were confirmed by Rietveld analyses of X-ray diffraction (XRD) patterns. From XRD patterns, it was also confirmed that no impurity phase is present in co-doped and undoped samples. The crystallite size of each sample was calculated by two ways, namely, Scherrer’s formula and Williamson–Hall (W–H) method. The crystallographic strain of the co-doped samples was estimated from W–H method and the values were compared with that of the undoped one. Raman spectra recorded at room temperature indicates that oxygen vacancy in co-doped samples was enhanced compared to that of SnO2. In addition, dielectric properties of the co-doped samples were improved compared to that of SnO2 and the AC conductivity of all the co-doped samples was lowered due to replacement of Sn ion by Mn and Co ions which indicate that the resistivity of co-doped sample increases compared to that of the pristine sample. However, the AC conductivity of undoped and all co-doped samples was increased with the increase of frequency due to charge-hopping mechanism.



Authors wish to acknowledge WBDST, Govt. of W.B. for financial assistance (Memo: 292(SANC)/ST/P/S&T/16G-28/2017, Dated: 28.03.2018). Authors also wish to acknowledge UGC, Govt. of India for CAS-II (No: F.530/20/CAS-II/2018 (SAP-I), Dated: 25.07.2018).


  1. 1.
    K.-C. Zhang, Y.-F. Li, Y. Liu, Y. Zhu, J. Appl. Phys. 112, 043705 (2012)CrossRefADSGoogle Scholar
  2. 2.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)CrossRefADSGoogle Scholar
  3. 3.
    A. Parveen, S.A. Ahmad, S. Agrawal, A. Azam, Mater. Today Proc. 4, 9429–9433 (2017)CrossRefGoogle Scholar
  4. 4.
    P. Chetri, B. Saikia, A. Choudhury, J. Appl. Phys. 113, 233514 (2013)CrossRefADSGoogle Scholar
  5. 5.
    G. Ansari, D. Boroojerdian, S.R. Sainker, R.N. Karekar, R.C. Aiyer, S.K. Kulkarni, Thin Solid Films 295, 271–276 (1997)CrossRefADSGoogle Scholar
  6. 6.
    S. Ding, J.S. Chen, X.W. Lou, Adv. Funct. Mater. 21, 4120–4125 (2011)CrossRefGoogle Scholar
  7. 7.
    E. Ramasamy, J. Lee, J. Phys. Chem. C 114, 22032–22037 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Pan, G. Li, Recent Pat. Nanotechnol. 5, 138–161 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Ferrere, A. Zaban, B.A. Gsegg, J. Phys. Chem. B 101, 4490–4493 (1997)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu, M. Moskovits, Nano Lett. 4, 403–407 (2004)CrossRefADSGoogle Scholar
  11. 11.
    P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, Curr. Appl. Phys. 13, 479–486 (2013)CrossRefADSGoogle Scholar
  12. 12.
    T.M. Shaw, S.T. McKinstry, P.C. McIntyre, Annu. Rev. Mater. Sci. 30, 263–298 (2000)CrossRefADSGoogle Scholar
  13. 13.
    L.A.K. Dominik, R.K. Maccrone, Phys. Rev. 156, 910–913 (1967)CrossRefADSGoogle Scholar
  14. 14.
    V. Skoromets, H. Nemec, J. Kopecek, P. Kuzel, J. Phys. Chem. C 119, 19485–19495 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Mehraj, M.S. Ansari, Phys. E 65, 84–92 (2015)CrossRefGoogle Scholar
  16. 16.
    A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, T.S. Plivelic, I.L. Torrianib, J. Larrea, E.B. Saitovitch, J. Magn. Magn. Mater. 272–276, 2211–2213 (2004)CrossRefADSGoogle Scholar
  17. 17.
    K. Subramanyam, N. Sreelekha, D. Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, Superlattices Microstruct. 82, 207–218 (2015)CrossRefADSGoogle Scholar
  18. 18.
    M.Y. Huh, S.H. Kim, J.P. Ahn, J.K. Park, B.K. Kim, Nanostruct. Mater. 11, 211–220 (1999)CrossRefGoogle Scholar
  19. 19.
    L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, W.L. Zhou, L.M. Wang, J. Alloy. Compd. 454, 261–267 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Jayalakshmi, M. Mohan Rao, K.-B. Kim, Int. J. Electrochem. Sci. 1, 324–333 (2006)Google Scholar
  21. 21.
    N. Mazumder, A. Bharati, S. Saha, D. Sen, K.K. Chattopadhyay, Curr. Appl. Phys. 12, 975–982 (2012)CrossRefADSGoogle Scholar
  22. 22.
    K. Rajwali, F. Ming-Hu, Chin. Phys. B 24, 127803 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Ahmad, S. Khan, J. Alloy. Compd. 720, 502–509 (2017)CrossRefGoogle Scholar
  24. 24.
    M.S. Inpasalini, R. Choubey, S. Mukherjee, J. Electron. Mater. 45, 3562–3569 (2016)CrossRefADSGoogle Scholar
  25. 25.
    J. Wang, W. Zhou, P. Wu, J. Nanopart. Res. 16, 2573 (2014)CrossRefADSGoogle Scholar
  26. 26.
    N. Bandyopadhyay, S. Bhakta, B.J. Sutradhar, A.K. Sarkar, S. Deb, K. Kobayashi, Yoshimura, P.K. Chakrabarti, RSC Adv. 6, 101818–101826 (2016)CrossRefGoogle Scholar
  27. 27.
    N. Bhakta, T. Inamori, R. Shirakami, Y. Tanioku, K. Yoshimura, P.K. Chakrabarti, Mater. Res. Bull. 104, 6–14 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Mitra, A.S. Mahapatra, A. Mallick, A. Shaw, N. Bhakta, P.K. Chakrabarti, Ceram. Int. 44, 4442–4449 (2018)CrossRefGoogle Scholar
  29. 29.
    J.K. Yang, H.L. Zhao, Y. Zhu, L.P. Zhao, J. Li, Adv. Mater. Res. 634–638, 2545–2549 (2013)CrossRefGoogle Scholar
  30. 30.
    S.A. Ahmed, S.H. Mohamed, J. Magn. Magn. Mater. 324, 812–817 (2012)CrossRefADSGoogle Scholar
  31. 31.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  32. 32.
    S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang, J. Zuo, Chem. Phys. Lett. 376, 103–107 (2003)CrossRefADSGoogle Scholar
  33. 33.
    K. Bouras, J.-L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, M. Balestrieri, D. Ihiawakrim, A. Dinia, A. Slaoui, J. Mater. Chem. C 2, 8235–8243 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Singh, N. Kohli, R.C. Singh, J. Mater. Sci. Mater. Electron. 28, 2257–2266 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Luo, P.K. Chu, Z. Di, M. Zhang, W. Liu, C. Lin, J. Fan, X. Wu, Appl. Phys. Lett. 88, 013109 (2006)CrossRefADSGoogle Scholar
  36. 36.
    K. Vijayarangamuthu, S. Rath, J. Alloy. Compd. 610, 706–712 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Srinivas, M. Vithal, B. Sreedhar, M. Manivel Raja, P. Venugopal Reddy, J. Phys. Chem. C 113, 3543–3552 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Maxwell, Electric and Magnetism, vol. 2 (Oxford University Press, New York, 1973)Google Scholar
  39. 39.
    N.K. Divya, P.U. Aparna, P.P. Pradyumnan, Adv. Mater. Phys. Chem. 5, 287–294 (2015)CrossRefGoogle Scholar
  40. 40.
    C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefADSGoogle Scholar
  41. 41.
    K. Rajwali, F. Ming-Hu, Chin. Phys. B 24(12), 127803 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Ramo, J. Winnery, T.V. Duzer, Fields and waves in communication electronics (Wiley, New York, 1965)Google Scholar
  43. 43.
    M. Ashokkumar, S. Muthukumaran, J. Magn. Magn. Mater. 374, 61–66 (2015)CrossRefADSGoogle Scholar
  44. 44.
    A. Tabib, N. Sdiri, H. Elhouichet, M. Ferid, J. Alloys Compd. 622, 687–694 (2015)CrossRefGoogle Scholar
  45. 45.
    A.S. Mahapatra, A. Mitra, A. Mallick, A. Shaw, J.M. Greneche, P.K. Chakrabarti, J. Alloy. Compd. 743, 274–282 (2018)CrossRefGoogle Scholar
  46. 46.
    R. James, S. Priya, Uchino, Jpn. J. Appl. Phys. 41, 5272–5276 (2002)CrossRefADSGoogle Scholar
  47. 47.
    S. Mehraj, M.S. Ansari, J. Nanoeng. Nanomanufact. 3, 229–236 (2013)CrossRefGoogle Scholar
  48. 48.
    S. Sagadevan, J. Podder, Soft Nanosci. Lett. 5, 55–64 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Solid State Research Laboratory, Department of PhysicsBurdwan UniversityBurdwanIndia

Personalised recommendations