Applied Physics A

, 125:67 | Cite as

A research on growth and characterization of CdS:Eu thin films

  • S. YılmazEmail author
  • İ. Polat
  • M. Tomakin
  • E. Bacaksız


Chemical spray pyrolysis-grown CdS thin films including various quantities of Eu atoms (from 0 to 10 at.%) were synthesized on glass slides. The detailed physical properties of the produced CdS and CdS:Eu thin films were explored. Structural analysis showed that Eu-doping enhanced the crystal quality of CdS thin films until 10 at.% Eu-doping and further Eu-doping treatment led to a distortion in the CdS structure. In addition, the crystallite sizes of CdS thin films dropped from 36.2 to 32.4 nm as Eu-doping level increased to 10 at.%. Morphological data showed that increasing Eu-doping remarkably varied the surface morphology of CdS thin films forming smaller grains. Chemical content examinations approved the presence of Eu atoms in CdS structure. From the optical measurements, it was obtained that more transparent CdS thin films with a maximum transmittance of 68% at 820 nm were created after 10 at.% Eu-doping and bandgap values of samples reduced from 2.58 to 2.47 eV with rising of Eu-doping from 0 to 10 at.%. Room temperature photoluminescence data demonstrated the formation of two essential peaks for all the samples, which are in turn related to green and yellow bands. Electrical investigation pointed out that Eu-doping enhanced the carrier density of CdS thin films from 4.38 × 1013 cm− 3 to 2.46 × 1014 cm− 3 and dropped the resistivity of CdS samples from 2.59 × 104 Ω cm to 5.85 × 103 Ω cm until 6 at.% and further increment of Eu-doping paved the way to get worse electrical data. Thus, it can be brought a conclusion that Eu-doping not only improved the optical properties of CdS thin films, but also restored the electrical properties, which are able to use in the opto-electronic devices.



The work has been financially supported by the research fund of Adana Science and Technology University by a Project Number of 17103029.


  1. 1.
    A. Morales-Acevedo, Sol. Energy 80, 675 (2006)CrossRefADSGoogle Scholar
  2. 2.
    I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt. Res. Appl. 16, 235 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Gaceur, M. Giraud, M. Hemadi, S. Nowak, N. Menguy, J.P. Quisefit, K. David, T. Jahanbin, S. Benderbous, M. Boissiere, S. Ammar, J. Nanopart. Res. 14, 932 (2012)CrossRefADSGoogle Scholar
  4. 4.
    J. Zhang, D. Li, R. Chen, Q. Xiong, Nature 493, 504 (2013)CrossRefADSGoogle Scholar
  5. 5.
    Q. Li, R.M. Penner, Nano Lett. 5, 1720 (2005)CrossRefADSGoogle Scholar
  6. 6.
    P.P. Sahay, R.K. Nath, S. Tewari, Cryst. Res. Technol. 42, 275 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Chander, M.S. Dhak, Thin Solid Films 638, 179 (2017)CrossRefADSGoogle Scholar
  8. 8.
    S. Chander, M.S. Dhaka, J. Mater. Sci. Mater. Electron. 28, 6852 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Purohit, S. Chander, M.S. Dhaka, Vacuum 153, 35 (2018)CrossRefADSGoogle Scholar
  10. 10.
    N.R. Paudel, C. Xiao, Y. Yan, J. Mater. Sci. Mater. Electron. 25, 1991 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Jiankang, Ceram. Int. 41, S376 (2015)CrossRefGoogle Scholar
  12. 12.
    Z.R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, H.Y. Zahran, J. Electron. Mater. 47, 5386 (2018)CrossRefADSGoogle Scholar
  13. 13.
    S. Yılmaz, Appl. Surf. Sci. 357, 873 (2015)CrossRefADSGoogle Scholar
  14. 14.
    K. Ashwini, C. Yashaswini, Pandurangappa, Opt. Mater. 37, 537 (2014)CrossRefADSGoogle Scholar
  15. 15.
    M. Najafi, H. Haratizadeh, Mater. Res. Bull. 65, 103 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Saravanan, R. Jayavel, S.S. Aldeyab, J.S. Zaidi, K. Ariga, A. Vinu, J. Nanosci. Nanotechnol. 11, 7783 (2011)CrossRefGoogle Scholar
  17. 17.
    X. Wang, H. Zhang, J. Li, L. Miao, Y. Yang, J. Mater. Sci. Mater. Electron. 24, 1883 (2013)CrossRefGoogle Scholar
  18. 18.
    N. Üzar, J. Mater. Sci. Mater. Electron. 29, 10471 (2018)CrossRefGoogle Scholar
  19. 19.
    V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, J. Sol–Gel. Sci. Technol. 86, 293 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Sadhu, P.S. Chowdhury, A. Patra, J. Lumin. 126, 387 (2007)CrossRefGoogle Scholar
  21. 21.
    K. Zhang, Y. Yu, S. Sun, Appl. Surf. Sci. 258, 7658 (2012)CrossRefADSGoogle Scholar
  22. 22.
    B. Cheng, Z. Han, H. Guo, S. Lin, Z. Zhang, Y. Xiao, S. Lei, J. Appl. Phys. 108, 014309 (2010)CrossRefADSGoogle Scholar
  23. 23.
    R. Zhao, P. Wang, T. Yang, Z. Li, B. Xiao, M. Zhang, J. Phys. Chem. C 119, 28679 (2015)CrossRefGoogle Scholar
  24. 24.
    E. Bacaksiz, S. Aksu, S. Yılmaz, M. Parlak, M. Altunbaş, Thin Solid Films 518, 4076 (2010)CrossRefADSGoogle Scholar
  25. 25.
    A. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour, S.W. Joo, Appl. Catal. A 488, 160 (2014)CrossRefGoogle Scholar
  26. 26.
    B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S.H. Park, Mater. Lett. 181, 227 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Zhao, T. Yang, Y. Luo, M. Chuai, X. Wu, Y. Zhang, Y. Ma, M. Zhang, RSC Adv. 7, 31433 (2017)CrossRefGoogle Scholar
  28. 28.
    M.M. Ferrer, Y.V.B. De Santana, C.W. Raubach, F.A. La Porta, A.F. Gouveia, E. Longo, J.R. Sambrano, J. Mol. Model. 20, 2375 (2014)CrossRefGoogle Scholar
  29. 29.
    S.M. Ahmed, P. Szymanski, M.A. El-Sayed, Y. Badr, L.M. El-Nadi, Appl. Surf. Sci. 359, 356 (2015)CrossRefADSGoogle Scholar
  30. 30.
    A. Franco, H.V.S. Pessoni, M.P. Soares, J. Magn. Magn. Mater. 355, 325 (2014)CrossRefADSGoogle Scholar
  31. 31.
    G.S. Thool, M. Arunakumari, A.K. Singh, S.P. Singh, Bull. Mater. Sci. 38, 1519 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Shahroosvand, M. Ghorbani-asl, J. Lumin. 144, 223 (2013)CrossRefGoogle Scholar
  33. 33.
    J.I. Contreras-Rascon, M.E. Linares-Aviles, J. Diaz-Reyes, J.F. Sanchez-Ramirez, J.E. Flores-Mena, R.S. Castillo-Ojeda, M.C. Peralta-Clara, J.S. Veloz-Rendon, Rev. Mex. Fis. 64, 240 (2018)CrossRefGoogle Scholar
  34. 34.
    L.F. Koao, B.F. Dejene, H.C. Swart, S.V. Motloung, T.E. Motaung, Opt. Mater. 60, 294 (2016)CrossRefADSGoogle Scholar
  35. 35.
    S. Kumar, Z. Jindal, N. Kumari, N.K. Verma, J. Nanopart. Res. 13, 5465 (2011)CrossRefADSGoogle Scholar
  36. 36.
    A. Selishchev, V. Pavlishchuk, Theor. Exp. Chem. 51, 366 (2016)CrossRefGoogle Scholar
  37. 37.
    X. Li, M. Gan, Y. Yang, L. Ma, J. Yan, J. Zhang, J. Solid State Electrochem. 19, 3059 (2015)CrossRefGoogle Scholar
  38. 38.
    N. Akçay, G. Algün, N. Kılıç, S. Shawuti, M.M. Can, J. Mater. Sci. Mater. Electron. 28, 4492 (2017)CrossRefGoogle Scholar
  39. 39.
    M. Shkir, I.S. Yahia, V. Ganesh, Y. Bitla, I.M. Ashraf, A. Kaushik, S. AlFaify, Sci. Rep. 8, 13806 (2018)CrossRefADSGoogle Scholar
  40. 40.
    M. Shkir, S. AlFaify, Sci. Rep. 7, 16091 (2017)CrossRefADSGoogle Scholar
  41. 41.
    M. Shkir, S. AlFaify, I.S. Yahia, M.S. Hamdy, V. Ganesh, H. Algarni, J. Nanoparticle Res. 19, 328 (2017)CrossRefADSGoogle Scholar
  42. 42.
    M. Shkir, Z.R. Khan, M.S. Hamdy, H. Algarni, S. AlFaify, Mater. Res. Express. 5, 095032 (2018)CrossRefADSGoogle Scholar
  43. 43.
    M. Pal, N.R. Mathews, E.R. Morales, J.M. Gracia y Jimenez, X. Mathew, Opt. Mater. 35, 2664 (2013)CrossRefADSGoogle Scholar
  44. 44.
    L.F. Koao, F.B. Dejene, R.E. Kroon, H.C. Swart, J. Lumin. 147, 85 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Lang, Q. Zhang, Q. Han, Y. Fang, J. Wang, X. Li, Y. Liu, D. Wang, J. Yang, Mater. Chem. Phys. 194, 29 (2017)CrossRefGoogle Scholar
  46. 46.
    P.V. Korake, A.N. Kadam, K.M. Garadkar, J. Rare Earth. 32, 306 (2014)CrossRefGoogle Scholar
  47. 47.
    M. Chandrasekhar, H. Nagabhushana, Y.S. Vidya, K.S. Anantharajud, S.C. Sharma, H.B. Premkumar, S.C. Prashantha, B.D. Prasad, C. Shivakumarai, R. Sarafi, H.P. Nagaswarupa, J. Mol. Catal. A: Chem. 409, 26 (2015)CrossRefGoogle Scholar
  48. 48.
    A.J. Reddy, M.K. Kokila, H. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, B.M. Nagabhushana, R.H. Krishna, Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 305 (2014)CrossRefADSGoogle Scholar
  49. 49.
    R.M. Sanchez Rayes, Y. Kumar, M.A. Cortes-Jácome, J.A. Toledo Antonio, X. Mathew, N.R. Mathews, Phys. Status Solidi A 214, 1700229 (2017)CrossRefADSGoogle Scholar
  50. 50.
    G. Turgut, S. Duman, E. Sonmez, F.S. Ozcelik, Mater. Sci. Eng. B. 206, 9 (2016)CrossRefGoogle Scholar
  51. 51.
    Y.-J. Lin, C.-F. You, H.-C. Chang, C.-J. Liu, C.-A. Wu, J. Lumin. 158, 407 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Xu, S. Quan, Z. Zou, P. Guo, Y. Lu, H. Yan, Y. Luo, Chem. Phys. Lett. 652, 216 (2016)CrossRefADSGoogle Scholar
  53. 53.
    M.S. Alqahtani, N.M.A. Hadia, S.H. Mohamed, Appl. Phys. A. 123, 298 (2017)CrossRefADSGoogle Scholar
  54. 54.
    P. Kumar, N. Saxena, R. Chandra, K. Gao, S. Zhou, A. Agarwal, F. Singh, V. Gupta, D. Kanjilal, J. Lumin. 147, 184 (2014)CrossRefGoogle Scholar
  55. 55.
    M.A. Osman, W.A. El-Said, A.A. Othman, A.G. Abd-Elrahim, J. Phys. D Appl. Phys. 49, 165302 (2016)CrossRefADSGoogle Scholar
  56. 56.
    S. Yılmaz, Y. Atasoy, M. Tomakin, E. Bacaksız, Superlatt. Microstruct. 88, 299 (2015)CrossRefADSGoogle Scholar
  57. 57.
    N.H. Patel, M.P. Deshpande, S.H. Chaki, J. Mater. Sci. Mater. Electron. 29, 11394 (2018)CrossRefGoogle Scholar
  58. 58.
    K. Deka, M.P.C. Kalita, J. Alloys Compd. 757, 209 (2018)CrossRefGoogle Scholar
  59. 59.
    P. Elavarthi, A.A. Kumar, G. Murali, D.A. Reddy, K.R. Gunasekhar, J. Alloys Compd. 656, 510 (2016)CrossRefGoogle Scholar
  60. 60.
    N.S. Gajbhiye, R.S. Ningthoujam, A. Ahmed, D.K. Panda, S.S. Umare, S.J. Sharma, Prama J. Phys. 70, 313 (2008)CrossRefADSGoogle Scholar
  61. 61.
    F. Ben Slimen, Z. Zaaboub, M. Haouari, N.B.H. Mohamed, H. Ben Ouada, S. Chaussedent, N. Gaumer, RSC Adv. 7, 14552 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Yılmaz
    • 1
    Email author
  • İ. Polat
    • 2
  • M. Tomakin
    • 3
  • E. Bacaksız
    • 4
  1. 1.Department of Materials Engineering, Faculty of EngineeringAdana Science and Technology UniversityAdanaTurkey
  2. 2.Department of Energy Systems Engineering, Faculty of TechnologyKaradeniz Technical UniversityTrabzonTurkey
  3. 3.Department of Physics, Faculty of Arts and SciencesRecep Tayyip Erdogan UniversityRizeTurkey
  4. 4.Department of Physics, Faculty of SciencesKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations