Advertisement

Applied Physics A

, 125:74 | Cite as

Hafnium oxide nanoparticles fabricated by femtosecond laser ablation in water

  • M. Dhanunjaya
  • Chandu Byram
  • V. S. Vendamani
  • S. Venugopal Rao
  • A. P. Pathak
  • S. V. S. Nageswara RaoEmail author
Article
  • 132 Downloads

Abstract

We report the fabrication of colloidal hafnia nanoparticles (NPs) and nanoribbons (NRs) in deionized water achieved by femtosecond laser ablation. The average size of NPs and NRs varied in the range 13.5–18.0 nm and 10–20 nm, respectively, with varying input laser energy. At lower energies, the NPs were observed to be in pure monoclinic phase of HfO2. However, at higher input energies, interestingly, both monoclinic and hexagonal phases corresponding to HfO2 and Hf6O were observed. Hf6O is otherwise expected only at high pressures.

Notes

Acknowledgements

MD and SVSN thank the IUAC, New Delhi for financial support from IUAC-UFR project (Grant no. 57314). S. Venugopal Rao acknowledges DRDO, India for the financial support. We thank Dr. Pardhu Yella for useful discussions in TEM analysis.

References

  1. 1.
    W.J. Zhu, T.-P. Ma, IEEE Electron Device Lett. 23, 97–99 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    L.A. Lipkin, J. Palmour, IEEE Trans. Electron Devices 46, 525 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    M. Lesser, Opt. Eng. 26, 911–915 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    M. Fadel, O.A. Azim, O.A. Omer, R.R. Basily, Appl. Phys. A 66, 335–343 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    A. Callegari, E. Cartier, M. Gribelyuk, J.F. Okorn-Schmidt, T. Zabel, J. Appl. Phys. 90, 6466–6475 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    M. Toledano-Luque, E. San Andrés, A. del Prado, I. Mártil, M.L. Lucía, G. González-Díaz, F.L. Martínez, W. Bohne, J. Röhrich, E. Strub, J. Appl. Phys. 102, 044106 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    X.-Y. Zhang, C.-H. Hsu, Y.-S. Cho, S.-Y. Lien, W.-Z. Zhu, S.-Y. Chen, W. Huang, L.-G. Xie, L.-D. Chen, X.-Y Zou, S.-X. Huang, Appl. Sci. 7, 1244 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Maggiorella, G. Barouch, C. Devaux, A. Pottier, E. Deutsch, J. Bourhis, E. Borghi, L. Levy, Future Oncol. 8(9), 1167–1181 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Shim, J. Rivera, R. Bashir, Nanoscale 21, 10887–10893 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Lee, A. Baraket, N. Zine, M. Zabala, F. Campabadal, A. Errachid, N. Jaffrezic-Renault, Sens. Transducers 27, 233–238 (2014)Google Scholar
  11. 11.
    T.L. Mc Ginnity, O. Dominguez, T.E. Curtis, P.D. Nallathamby, A.J. Hoffman, R.K. Roeder, Nanoscale 8, 13627–13637 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    L. Allison et al., Future Oncol 10, 2329–2344 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Marill, N.M. Anesary, P. Zhang, S. Vivet, E. Borghi, L. Levy, A. Pottier, Radiat. Oncol. 9, 150 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Galon, M. Lae, J. Tharaiat, S. Carrere, Z. Papai et al., J. Clin. Oncol. 36(15), e15149–e15149 (2018)CrossRefGoogle Scholar
  15. 15.
    N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, S.S. Ray, J.C. Ngila, Sci. Rep. 7, 9351 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    W. Zhou, S.V. Ushakov, T. Wang, J.G. Ekerdt, A.A. Demkov, A. Navrotsky, J. Appl. Phys. 107, 123514 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    K.K. Bharathi, N.R. Kalidindi, C.V. Ramana, J. Appl. Phys. 108, 083529 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M. Dhanunjaya, S.A. Khan, A.P. Pathak, D.K. Avasthi, S.V.S. Nageswara Rao, J. Phys. D Appl. Phys. 50, 505301 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Liu, Y. Chen, L. Wang, D.L. Peng, J. Appl. Phys. 113, 076102 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Pugachevskii, V.I. Panfilov, J. Appl. Spectrosc. 81, 640–643 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    N.G. Semaltianos, J.M. Friedt, R. Chassagnon, V. Moutarlier, V. Blondeau-Patissier, G. Combe, M. Assoul, G. Monteil, J. Appl. Phys. 119, 204903 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, J. Appl. Phys. 85, 4213 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, J. Appl. Phys. 85, 4222 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    V.S. Vendamani, S. Hamad, V. Saikiran, A.P. Pathak, S. Venugopal Rao, V.V. Ravi, K. Kumar, S.V.S. Nageswara Rao, J. Mater. Sci. 50, 1666–1672 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    G.K. Podagatlapalli, S. Hamad, S. Venugopal Rao, J. Phys. Chem. C 119, 16972–16983 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Hamad, G. Krishna Podagatlapalli, M.A. Mohiddon, S. Venugopal Rao, Appl. Phys. Lett. 104, 263104 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990–4103 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Xiao, P. Liu, C.X. Wang, G.W. Yang, Prog. Mater Sci. 87, 140–220 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333–1353 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Zhang, J. Liu, P. Li, Z. Tian, C. Liang, Chem. Nano Mater. 3, 512–533 (2007)Google Scholar
  31. 31.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949–957 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    E.G. Gamaly, A.V. Rode, Appl. Phys. A 278, 1–11 (2018)Google Scholar
  33. 33.
    C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode, Phys. Rev. Lett. 106, 123901 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, G. Račiukaitis, Appl. Phys. Lett. 91, 083113 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    G. Krishna Podagatlapalli, S. Hamad, S.P. Surya, S. Sreedhar, M.D. Prasad, S. Venugopal Rao, J. Appl. Phys. 13, 073106 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    S. Venugopal Rao, G.K. Podagatlapalli, S. Hamad, J. Nanosci. Nanotechnol. 14, 1364–1388 (2014)CrossRefGoogle Scholar
  37. 37.
    T.X. Phuoc, J. Mater. Sci. Nanotechnol. 2, 1–7 (2014)Google Scholar
  38. 38.
    V.S. Vendamani, A. Tripathi, A.P. Pathak, S. Venugopal Rao, A. Tiwari, Mater. Lett. 192, 29–32 (2017)CrossRefGoogle Scholar
  39. 39.
    H. He, W. Cai, Y. Lin, B. Chen, Chem. Commun. 46, 7223–7225 (2010)CrossRefGoogle Scholar
  40. 40.
    O.V. Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, Laser Phys. 23, 055901 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89–90 (1964)ADSCrossRefGoogle Scholar
  42. 42.
    Z.R. Dai, J.L. Gole, J.D. Stout, Z.L. Wang, J. Phys. Chem. B 106, 1274–1279 (2002)CrossRefGoogle Scholar
  43. 43.
    E. Rudy, P. Stecher, J. Less Common Met. 5, 78–89 (1963)CrossRefGoogle Scholar
  44. 44.
    D. Shin, R. Arroyave, Z.K. Liu, Calphad 30, 375–386 (2006)CrossRefGoogle Scholar
  45. 45.
    J. Wallenius, D. Westlen, Ann. Nucl. Energy 35, 60–67 (2008)CrossRefGoogle Scholar
  46. 46.
    J.Q. Hu, Y. Bando, Q.L. Liu, D. Golberg, Adv. Funct. Mater. 13, 493–496 (2003)CrossRefGoogle Scholar
  47. 47.
    S. Juodkazis, A. Vailionis, E.G. Gamaly, L. Rapp, V. Mizeikis, A.V. Rode, MRS Adv. 1, 1149–1155 (2016)CrossRefGoogle Scholar
  48. 48.
    S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    R. Buividas, G. Gervinskas, A. Tadich, B.C.C. Cowie, V. Mizeikis, A. Vailionis, D. de Ligny, E.G. Gamaly, A.V. Rode, S. Juodkazis, Adv. Eng. Matt. 16, 767–773 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Al-Khatatbeh, K.K.M. Lee, B. Kiefer, Phys. Rev. B 82, 144106 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    J. Zhang, A.R. Oganov, X. Li, H. Dong, Q. Zeng, Phys. Chem. Chem. Phys. 14, 17301–17310 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Zhang, A.R. Oganov, X. Li, K.-H. Xue, Z. Wang, H. Dong, Phys. Rev. B 92, 184104 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    P. Blaise, B. Traore (2015), http://arxiv.org/abs/1511.07665v1
  54. 54.
    L. Bayarjargal, W. Morgenroth, N. Schrodt, B. Winkler, V. Milman, C.R. Stanek, B.P. Uberuaga, High Press. Res. 37, 147–158 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    N. Selvakumar, H.C. Barshilia, K.S. Rajam, Sol. Energy Mater. Sol. Cells 94, 1412–1420 (2010)CrossRefGoogle Scholar
  56. 56.
    X. Zhao, D. Vanderbilt, Phys. Rev. B 65, 233106 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    M. Yashima, H. Takahashi, K. Ohtake, T. Hirose, M. Kakihana, H. Arashi, Y. Ikuma, Y. Suzuki, M. Yoshimura, J. Phys. Chem. Solids 57, 289–295 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    P.E. Quintard, P. Barberis, A.P. Mirgorodsky, T. Merle-Mejean, J. Am. Ceram. Soc. 85, 1745–1749 (2002)CrossRefGoogle Scholar
  59. 59.
    A. Jayaraman, S.Y. Wang, S.K. Sharma, L.C. Ming, Phys. Rev. B 48, 9205–9211 (1993)ADSCrossRefGoogle Scholar
  60. 60.
    J.S. Quintero-García, B.A. Puente-Urbina, L.A. García-Cerda, O.S. Rodríguez-Fernández, E. Mendoza-Mendoza, Mater. Lett. 159, 520–524 (2015)CrossRefGoogle Scholar
  61. 61.
    S.N. Tkachev, M.H. Manghnani, A. Niilisk, J. Aarik, H. Mandar, J. Mater. Sci. 40, 4293–4298 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    V. Jayaraman, G. Bhavesh, S. Chinnathambi, S. Ganesan, P. Aruna, Mater. Express 4, 375–383 (2014)CrossRefGoogle Scholar
  63. 63.
    B. Zhou, H. Shi, X.D. Zhang, Q. Su, Z.Y. Jiang, J. Phys. D Appl. Phys. 47, 115502 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    C.W. Li, M.M. Mc Kerns, B. Fultz, Phys. Rev. B 80, 054304 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia
  2. 2.Advanced Center of Research in High Energy Materials (ACRHEM)University of HyderabadHyderabadIndia
  3. 3.Inter University Accelerator CentreNew DelhiIndia

Personalised recommendations