Applied Physics A

, 125:110 | Cite as

Microstructure and properties of interfacial transition zone in ZTA particle–reinforced iron composites

  • Mojin Zhou
  • Yehua JiangEmail author
  • Yudong SuiEmail author


The interfacial transition zone (ITZ) in the zirconia toughened alumina (ZTA) ceramic particles reinforced the high chromium cast iron composites was studied. The main phases are Na4SiO4 and 3Al3O2·2SiO2 in the ITZ were identified by XRD, TEM, and HRTEM. The hardness and the elastic modulus of the ITZ were examined by nanoindentation test are 7.11 GPa and 202.68 GPa, respectively. The results show that the Fe and Mn diffused from the ZTA particles and matrix into the ITZ. The interface bonding strength of ZTA/ITZ and ITZ/matrix is stronger than the middle region of the ITZ.



This work was supported by the National Natural Science Foundation of China (no. 51571103), China Postdoctoral Science Foundation (no. 2018T110999) and Yunnan Provincial Department of Education Science Research Fund Project (no. 2018JS033).


  1. 1.
    T.S. Weng, C.-H. Tsai, Laser-induced backside wet cleaning technique for glass substrates. Appl. Phys. A 116, 597–604 (2014)CrossRefADSGoogle Scholar
  2. 2.
    Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, L. Zhou, Graphene–reinforced metal matrix nanocomposites—a review. Mater. Sci. Technol. 32, 930–953 (2016)CrossRefGoogle Scholar
  3. 3.
    R. Sui, C. Ju, W. Zhong, Q. Lin, Improved wetting of Al2O3 by molten Sn with Ti addition at 973–1273 K. J. Alloy Compd. 739, 616–622 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Sharma, R. Jain, V. Rawat, P.R. Hundekar, N. Singh, D. Kumar, P. Gupta, Structural and mechanical characterization of re-pressed and annealed iron–alumina metal matrix nanocomposites. J. Compos. Mater. 52, 1541–1556 (2018)CrossRefADSGoogle Scholar
  5. 5.
    L. Fan, Q. Wang, P. Yang, H. Chen, H. Hong, W. Zhang, J. Ren, Preparation of nickel coating on ZTA particles by electroless plating. Ceram. Int. 44, 11013–11021 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Ru, Y. Jia, Y. Jiang et al., Modification of ZTA particles with Ni coating by electroless deposition. Surf. Eng. 33(2016):353–361Google Scholar
  7. 7.
    S. Tang, Y. Gao, Y. Li, Q. Zheng, Preparation and interface investigation of Fe/Al2O3 composite activated by Ni and Ti. Adv. Eng. Mater. 18, 1913–1920 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Wang, K. Zheng, L. Li et al., Influence of Cr–Fe coating on wettability of aluminum on ZTA ceramics. Rare Met. 30, 520–523 (2011)CrossRefGoogle Scholar
  9. 9.
    X. Zhu, Y. Yuan, L. Li, Y. Du, F. Li, Identification of interfacial transition zone in asphalt concrete based on nano-scale metrology techniques. Mater. Des. 129, 91–102 (2017)CrossRefGoogle Scholar
  10. 10.
    D.M. Jarzabek, M. Chmielewski, J. Dulnik et al., The influence of the particle size on the adhesion between ceramic particles and metal matrix in MMC composites. J Mater Eng Perform 25, 3139–3145 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Waghray, R. Donaldson, M.L. La Forest, Composite materials including ceramic particles and methods of forming the same[P]. US9272950, 2016-03-01Google Scholar
  12. 12.
    X. Ma, L.F. Li, F. Zhang et al., Microstructure and wear characteristics of ATZ ceramic particle reinforced gray iron matrix surface composites. China Foundry 15, 167–172 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Sui, M. Zhou, Y. Jiang, Characterization of interfacial layer of ZTA ceramic particles reinforced iron matrix composites. J. Alloy Compd. 741, 1169–1174 (2018)CrossRefGoogle Scholar
  14. 14.
    W. Liu, R. Hu, M. Yue, Y. Yin, D. Zhang, Preparation and properties of isotropic Nd–Fe–B bonded magnets with sodium silicate binder. J. Magn. Magn. Mater. 435, 187–193 (2017)CrossRefADSGoogle Scholar
  15. 15.
    V. Mymrin, K. Alekseev, R.E. Catai et al., Red ceramics from composites of hazardous sludge with foundry sand, glass waste and acid neutralization salts. J Environ Chem Eng 4, 753–761 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Botero, E. Jimenez-Pique, J. Seuba, T. Kulkarni, V. Sarin, L. Llanes, Mechanical behavior of 3Al(2)O(3) center dot 2SiO(2) films under nanoindentation. Acta Mater. 60, 5889–5899 (2012)CrossRefGoogle Scholar
  17. 17.
    Kmita, Effect of metal oxides nanoparticles on the selected strength properties of moulding sand with water glass. Arch. Foundry Eng. 15, 33–38 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Chen, N. Li, X. Fu, W. Zhou, Preparation and characterization of a sodium polyacrylate/sodium silicate binder used in oxidation resistant coating for titanium alloy at high temperature. Powder Technol. 230, 134–138 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Li, L. Jiang, Y. Wang, I. Mohagheghian, J. Dear, L. Li, Y. Yan, Correlation between K+–Na+ diffusion coefficient and flexural strength of chemically tempered aluminosilicate glass. J Non-Cryst Solids 471, 72–81 (2017)CrossRefADSGoogle Scholar
  20. 20.
    J.R. Michael Humenik, W.D. Kingery, Metal–ceramic interactions: III, surface tension and wettability of metal–ceramic systems. J. Am. Ceram. Soc. 37, 18–23 (1954)CrossRefGoogle Scholar
  21. 21.
    H. Jung, S.A. Decterov, A.D. Pelton, Critical thermodynamic evaluation and optimization of the MgO–Al2O3, CaO–MgO–Al2O3, and MgO–Al2O3–SiO2 systems. J Phase Equilib. Diffus. 25, 329–345 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Pask, Importance of starting materials on reactions and phase equilibria in the Al2O3–SiO2 system. J. Eur. Ceram. Soc. 16, 101–108 (1996)CrossRefGoogle Scholar
  23. 23.
    M. Rosso, Ceramic and metal matrix composites: routes and properties. J. Mater. Process. Technol. 175, 364–375 (2006)CrossRefADSGoogle Scholar
  24. 24.
    J. Wojciech. Stępniowski, H. Choi, Yoo et al., Anodization of FeAl intermetallic alloys for bandgap tunable nanoporous mixed aluminum–iron oxide. J. Electroanal. Chem. 771, 37–44 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Rahman, N.A.M. Ghazali, Z.W.B. Wan, S.M. Masudi, Modification of glass ionomer cement by incorporating nanozirconia–hydroxyapatite–silica nano-powder composite by the one-pot technique for hardness and aesthetics improvement. Ceram. Int. 43, 13247–13253 (2017)CrossRefGoogle Scholar
  26. 26.
    R.D. Dar, Y. Chen, Nanoindentation studies of small-scale martensitic transformations and ductile precipitate effects in dual-phase polycrystalline shape memory alloys. Acta Mater. 91, 112–127 (2015)CrossRefGoogle Scholar
  27. 27.
    N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)MathSciNetCrossRefGoogle Scholar
  28. 28.
    B. Rother, A. Steiner, D.A. Dietrich, H.A. Jehn, J. Haupt, W. Gissler, Depth-sensing indentation measurements with Vickers and Berkovich indenters. J. Mater. Res. 13, 2071–2076 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.National and Local Joint Engineering Laboratory of Advanced Metal Solidification Forming and Equipment TechnologyKunmingPeople’s Republic of China

Personalised recommendations