Applied Physics A

, 125:61 | Cite as

Preparation of NiCo2O4 and NiCo2S4 micro-onions for electrochemical sensing of glucose

  • Hongwen Yuan
  • Chi Ma
  • Zhenfei Gao
  • Liqiang ZhangEmail author
Rapid communication


Glucose is an important indicator of life activity. How to quickly and accurately detect glucose concentration is of great significance in life activities. In this study, the Co3O4 micro-balls with onion structure were first grown by a hydrothermal method (160 °C, 4 h). Second, these Co3O4 micro-onions were transformed into Co4S3 micro-onions particles via a second hydrothermal reaction (90 °C, 6 h). Third, Co4S3 was transformed into NiCo2S4 micro-onions via a third hydrothermal process (160 °C, 4 h). The preparation method of NiCo2O4 is similar as the preparation of Co3O4, which extra adds Ni(NO3)2·6H2O in hydrothermal treatment. Compared with NiCo2O4, we find that this micro-onion structure NiCo2S4 glucose sensor shows a high sensitivity of 1.89 mA mM− 1 cm− 2, a fast response time (less than 1.8 s), a low detection limit [2.226 µM (S/N = 3)], and a wide detection range (0.2–2.4 mM). Moreover, the NiCo2S4 electrode exhibits a high selectivity for glucose in human serum, against ascorbic acid and uric acid.



This work was financially supported by the National Natural Science Foundation of China (National Natural Science Foundation of China, No. 81403467) and Beijing Natural Science Foundation of China-Haidian Special Project (L182065).


  1. 1.
    W. Joseph, Electroanalysis 17, 7–14 (2005)CrossRefGoogle Scholar
  2. 2.
    X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Biosens. Bioelectron. 25, 901–905 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556, 46–57 (2006)CrossRefGoogle Scholar
  4. 4.
    J.T. Baca, C.R. Taormina, E. Feingold, D.N. Finegold, J.J. Grabowski, S.A. Asher, Clin. Chem. 53, 1370–1372 (2007)CrossRefGoogle Scholar
  5. 5.
    Z.B. Qu, X. Zhou, L. Gu, R. Lan, D. Sun, D. Yu et al., Chem. Commun. 49, 9830–9832 (2013)CrossRefGoogle Scholar
  6. 6.
    F. Luo, Y. Lin, L. Zheng, X. Lin, Y. Chi, ACS Appl. Mater. Interfaces 7, 11322–11329 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Zhou, Y.M. Zhai, S.J. Dong, Anal. Chem. 81, 5603–5613 (2009)CrossRefGoogle Scholar
  8. 8.
    K.Y. Goud, S.K. Kailasa, V. Kumar, Y.F. Tsang, S.E. Lee, K.V. Gobi et al., Biosens. Bioelectron. 121, 205–222 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Liu, J. Tian, L. Wang, Y. Luo, W. Lu, X. Sun, Biosens. Bioelectron. 26, 4491–4496 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Lu, I. Do, L.T. Drzal, R.M. Worden, I. Lee, ACS Nano 2, 1825–1832 (2008)CrossRefGoogle Scholar
  11. 11.
    D.M. Seo, S.-H. Paek, S. Oh, S. Seo, S.-H. Paek, Sensors 16, 1581 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Ding, Y. Wang, L.A. Su, M. Bellagamba, H. Zhang, Y. Lei, Biosens. Bioelectron. 26, 542–548 (2010)CrossRefGoogle Scholar
  13. 13.
    X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am. Chem. Soc. 133, 3693–3695 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Liu, Q. Ren, T. Xu, M. Yuan, W. Tang, Sens. Actuator B Chem. 162, 135–142 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Li, C. Han, Y. Zhang, X. Bo, L. Guo, Anal. Chim. Acta 861, 25–35 (2015)CrossRefGoogle Scholar
  16. 16.
    C.-W. Kung, C.-Y. Lin, Y.-H. Lai, R. Vittal, K.-C. Ho, Biosens. Bioelectron. 27, 125–131 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Guo, X. Zhang, H. Huo, C. Xu, X. Han, Analyst 138, 6727–6731 (2013)CrossRefADSGoogle Scholar
  18. 18.
    H. Yang, G. Gao, F. Teng, W. Liu, S. Chen, Z. Ge, J. Electrochem. Soc. 161, B216–B219 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Fan, Z. Yang, X. Cao, P. Liu, S. Chen, Z. Cao, J. Electrochem. Soc. 161, B201–B206 (2014)CrossRefGoogle Scholar
  20. 20.
    B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Adv. Mater. 29, 1605051 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Meng, M. Wu, Q. Wang, Z. Dai, W. Si, W. Huang et al., Nanotechnology 27, 344001 (2016)CrossRefGoogle Scholar
  22. 22.
    P.K. Kannan, C. Hu, H. Morgan, C.S. Rout, Chem. Asian J. 11, 1837–1841 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett. 14, 831–838 (2014)CrossRefADSGoogle Scholar
  24. 24.
    J. Wang, Chem. Rev. 108, 814–825 (2008)CrossRefGoogle Scholar
  25. 25.
    D. Chen, H. Wang, M. Yang, Anal. Methods 9, 4718–4725 (2017)CrossRefGoogle Scholar
  26. 26.
    K.J. Babu, T. Raj kumar, D.J. Yoo, S.-M. Phang, G. Gnana kumar, ACS Sustain. Chem. Eng. 6, 16982–16989 (2018)CrossRefGoogle Scholar
  27. 27.
    P.K. Kannan, C.S. Rout, Chem. Eur. J. 21, 9355–9359 (2015)CrossRefGoogle Scholar
  28. 28.
    S.K. Maji, A.K. Dutta, G.R. Bhadu, P. Paul, A. Mondal, B. Adhikary, J. Mater. Chem. B 1, 4127–4134 (2013)CrossRefGoogle Scholar
  29. 29.
    X.J. Zhang, G.F. Wang, A.X. Gu, Y. Wei, B. Fang, Chem. Commun., 5945–5947 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
  2. 2.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingChina
  3. 3.Center for Microchemistry, Beijing Science and Engineering Center for Microcarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations