Advertisement

Applied Physics A

, 125:41 | Cite as

Controlling the aspect ratio of Zn(1−x)Eu(x)O nanostructures obtained by a statistical experimental design involving atomic layer deposition and microwave-assisted hydrothermal methods

  • J. L. Cervantes-López
  • R. RangelEmail author
  • V. J. Cedeño
  • J. J. Alvarado-Gil
  • P. Quintana
  • O. Contreras
  • J. Espino
Article
  • 25 Downloads

Abstract

Different aspect ratio nanostructures of pure ZnO and Zn(1−x)EuxO were produced through the application of a statistical factorial design 23. The procedure consisted of two stages. First, the growth of ZnO thin films by atomic layer deposition on silicon (111) substrates, by decomposition of the metal precursor, diethyl zinc, at 190 °C and 0.25 Torr. In the next stage, those films were processed using the microwave-assisted hydrothermal method to promote the growing of ZnO nanostructured compounds, using a precursor solution of Zn(NO3)2·6H2O and hexamethylene tetramine, acting as a bi-dentate ligand capable of bridging two Zn2+ ions in solution. In addition, europium-doped ZnO (Zn(1−x)EuxO) and ZnO nanostructures were produced using Zn(NO3)2·6H2O and Eu(NO3)3·5H2O. The experimental levels (values) considered for every factor were Eu3+ concentration (0.02 and 0.06, atomic, %), temperature (80° and 120 °C) and time (30 and 50 min). The synthesis products were characterized through X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and photoluminescence measurements. Our results demonstrate that it is possible to produce nanostructures with specific size, morphology and physical properties depending on the specific synthesis based on our proposed experimental design.

Notes

Acknowledgements

The present work was partially funded by Conacyt-Sener-Energy-Sustainability Grant 207450, within Strategic Project CEMIESol-Cosolpi No. 10 Solar Fuel and Industrial Processes. R Rangel acknowledges CIC-UMSNH under project 2018. The measurements were performed at LANNBIO Cinvestav Mérida. Also wish to thank to FOMIX-Yucatán 2008-108160 Conacyt LAB-2009-01-123913, 292692, 294643 projects. Authors also thank the technical help provided by W Cauich (XPS), D. Huerta (SEM), J. Bante and B. Heredia, and D. Aguilar (XRD) from Cinvestav-Unidad Merida.

References

  1. 1.
    S. Shafiei, A. Nourbakhsh, B. Ganjipour, Diameter optimization of VLS-synthesized ZnO nanowires, using statistical design of experiment. Nanotechnology 18, 355708 (2007)CrossRefGoogle Scholar
  2. 2.
    D. Rocak, M. Kosec, A. Degen, Ceramic suspension optimization using factorial design of experiments. J. Eur. Ceram. Soc. 22, 391–395 (2002)CrossRefGoogle Scholar
  3. 3.
    Z. Bayer Ozturk, B. Atay, M. Çakı, N. Ay, An investigation of color development by means of the factorial design in wall tile glazes with ferrochromium fly ash. Indian J. Eng. Mater. Sci. 22, 215–224 (2015)Google Scholar
  4. 4.
    Z. Bayer Ozturk, N. Ay, An investigation of the effect of alkaline oxides on porcelain tiles using factorial design. J. Ceram. Process. Res. 13, 635–640 (2012)Google Scholar
  5. 5.
    C. Fernandez, E. Verne, J. Vogel, G. Carl, Optimisation of the synthesis of glass ceramic matrix biocomposites by the ‘Responce Surface Methodology’. J. Eur. Ceram. Soc. 23, 1031–1038 (2003)CrossRefGoogle Scholar
  6. 6.
    C.N.R. Rao, A.K. Cheetham, Science and technology of nanomaterials: current status and future prospects. J. Mater. Chem. 11, 2887 (2001)CrossRefGoogle Scholar
  7. 7.
    S. Xu, N. Adiga, S. Ba, T. Dasgupta, J. Wu, Z.L. Wang, Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 1803 (2009)CrossRefGoogle Scholar
  8. 8.
    S. B. and J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 13001 (2009)CrossRefGoogle Scholar
  9. 9.
    Y. Dong, Z.Q. Fang, D.C. Look, G. Cantwell, J. Zhang, J.J. Song, L.J. Brillson, Zn- and O-face polarity effects at ZnO surfaces and metal interfaces. Appl. Phys. Lett. 93, 07211 (2008)Google Scholar
  10. 10.
    Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 624520 (2012)Google Scholar
  11. 11.
    P.V. Korake, R. Sridharkrishna, P.P. Hankare, K.M. Garadkar, Photocatalytic degradation of phosphamidon using Ag-doped ZnO nanorods. Toxicol. Environ. Chem. 94, 1075 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Yang, Y. Wang, L. Wang, G. Zhang, A. Vazinishayan, A. Duongthipthewa, Growth and characterization of ultra-long ZnO nanocombs. AIP Adv. 6, 65209 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Li, Y. Lin, F. Li, L. Zhu, D. Sun, L. Shen, Y. Chen, S. Ruan, Hexagonal ZnO nanorings: synthesis, formation mechanism and trimethylamine sensing properties. RSC Adv. 5, 80561 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Shi, S. Bao, R. Shi, C. Huang, A. Amini, Z. Wu, L. Zhang, N. Wang, C. Cheng, Y-shaped ZnO nanobelts driven from twinned dislocations. Sci. Rep. 6, 22494 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    W. Li, X. Wu, N. Han, J. Chen, X. Qian, Y. Deng, W. Tang, Y. Chen, MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sens. Actuators B Chem. 225, 158 (2016)CrossRefGoogle Scholar
  16. 16.
    J.W. Hoon, K.Y. Chan, J. Krishnasamy, T.Y. Tou, D. Knipp, Direct current magnetron sputter-deposited ZnO thin films. Appl. Surf. Sci. 257, 2508 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    L. Han, F. Mei, C. Liu, C. Pedro, E. Alves, Comparison of ZnO thin films grown by pulsed laser deposition on sapphire and Si substrates. Phys. E Low Dimens. Syst. Nanostructures 40, 699 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S. Khosravi-Gandomani, R. Yousefi, F. Jamali-Sheini, N.M. Huang, Optical and electrical properties of p-type Ag-doped ZnO nanostructures. Ceram. Int. 40, 7957 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Mohanty, B. Kim, J. Park, Synthesis of single crystalline europium-doped ZnO nanowires. Mater. Sci. Eng. B 138, 224 (2007)CrossRefGoogle Scholar
  20. 20.
    S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 3, 30 (2013)CrossRefGoogle Scholar
  21. 21.
    Y.F. Gomes, A.K. Freitas, R.M. Nascimento, M.R.D. Bomio, C.A. Paskocimas, F.V. Motta, Experimental statistic design applied for obtaining Zn:xCe by microwave-assisted hydrothermal method with photocatalytic property. J. Adv. Ceram. 5, 103 (2016)CrossRefGoogle Scholar
  22. 22.
    W. Kern, J.E. Soc, J. Electrochem, The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887 (1990)CrossRefGoogle Scholar
  23. 23.
    A. Phuruangrat, J. Ham, J. Hong, J. Sung, Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J. Mater. Chem. 20, 1683 (2010)CrossRefGoogle Scholar
  24. 24.
    J.L. Cervantes-López, R. Rangel, J. Espino, E. Martínez, R. García-Gutiérrez, P. Bartolo-Pérez, J.J. Alvarado-Gil, O.E. Contreras, Photoluminescence on cerium-doped ZnO nanorods produced under sequential atomic layer deposition hydrothermal processes. Appl. Phys. A 123, 86 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    O. Lupan, T. Pauporté, B. Viana, P. Aschehoug, M. Ahmadi, Science Eu-doped ZnO nanowire arrays grown by electrodeposition. Appl. Surf. Sci. 282, 782 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J.L. Cervantes-López, R. Rangel, M. García-Méndez, H. Tiznado, O. Contreras, P. Quintana, P. Bartolo-Pérez, J.J. Alvarado-Gil, Indium-doped ZnO nanorods grown on Si (1 1 1) using a hybrid ALD-solvothermal method. Mater. Res. Express 4, 75032 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Yang, X. Li, J. Lang, L. Yang, M. Wei, M. Gao, Synthesis and optical properties of Eu-doped ZnO nanosheets by hydrothermal method. Mater. Sci. Semicond. Process. 14, 247 (2011)CrossRefGoogle Scholar
  28. 28.
    O.M. Ntwaeaborwa, S.J. Mofokeng, V. Kumar, R.E. Kroon, Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 182, 42 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    M. Najafi, H. Haratizadeh, M. Ghezellou, The effect of annealing, synthesis temperature and structure on photoluminescence properties of Eu-doped ZnO nanorods. JNS 5, 129 (2015)Google Scholar
  30. 30.
    P.P. Pal, J. Manam, Structural and photoluminescence studies of Eu3+ doped zinc oxide nanorods prepared by precipitation method. J. Rare Earths 31, 37 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Zhong, G. Shan, Y. Li, G. Wang, Y. Liu, Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process. Mater. Chem. Phys. 106, 305 (2007)CrossRefGoogle Scholar
  32. 32.
    J. Huang, C. Xia, L. Cao, X. Zeng, Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology. Mater. Sci. Eng. B 150, 187 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Zareie, A. Gholami, M. Bahrami, A.H. Rezaei, M.H. Keshavarz, A simple method for preparation of micro-sized ZnO flakes. Mater. Lett. 91, 255–257 (2013)CrossRefGoogle Scholar
  34. 34.
    T.-P. Huynh, C. Pedersen, N.K. Wittig, H. Birkedal, Precipitation of inorganic phases through a photoinduced pH jump: from vaterite spheroids and shells to ZnO flakes and hexagonal plates. Cryst. Growth Des. 18, 1951–1955 (2018)CrossRefGoogle Scholar
  35. 35.
    B. Jason, F. Baxter, Wu, S. Eray, Aydil, Growth mechanism and characterization of zinc oxide hexagonal columns. Appl. Phys. Lett. 83, 3797–3799 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    P.P. Soumita Mukhopadhyay, S. Das, P. Maity, Ghosh, P. Sujatha Devi, Solution grown ZnO rods: synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B. 165, 128–138 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.División de estudios de Posgrado, Facultad de Ingeniería QuímicaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Departamento de Física AplicadaCINVESTAV-IPN, Unidad MéridaMéridaMexico
  3. 3.CNyN-UNAMEnsenadaMexico

Personalised recommendations