Applied Physics A

, 125:60 | Cite as

Spin-dependent giant junction magnetoresistance in simple Fe/p-Si(001) Schottky heretrojunction at low temperature

  • Anirban SarkarEmail author
  • Rajdeep Adhikari
  • Amal Kumar Das


We report on the giant junction magnetoresistance observed at low temperature in Fe/p-Si Schottky heterojunction. The device shows good rectifying characteristics at room temperature and a dual—Schottky as well as magnetic diode—characteristics at low temperature, below 50 K. Formation of a magnetic field-dependent potential barrier due to electrical injection of spin-polarized carriers from the ferromagnetic electrode into the semiconductor is speculated to result in such large junction resistance. The magnetoresistance value is of the order of \(10^{4}\%\) at 10 K and saturates at \(\sim 0.5\,\hbox {kOe}\), showing dual functionality—working as a magnetic diode as well as a magnetoresistive element.



We acknowledge the financial support of the Department of Science and Technology (DST), India (Project No. EMR/2014/001026) for this work. The authors, Anirban Sarkar and Rajdeep Adhikari, would like to further acknowledge the financial support of the Council of Scientific and Industrial Research (CSIR), India. We would also like to thank Patrick Schö ffmann from Forschungszentrum Jülich GmbH for reading and correcting the manuscript.


  1. 1.
    G.A. Prinz, Magnetoelectronics. Science 282, 1660 (1998)CrossRefGoogle Scholar
  2. 2.
    I. Z̆utić, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys 76, 323 (2004)CrossRefADSGoogle Scholar
  3. 3.
    C. Chappert, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage. Nat. Mater. 6, 813 (2007)CrossRefADSGoogle Scholar
  4. 4.
    S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665 (1990)CrossRefADSGoogle Scholar
  5. 5.
    J. Fabian, I. Z̆utić, S. Das Sarma, Magnetic bipolar transistor. Appl. Phys. Lett 84, 85 (2004)CrossRefADSGoogle Scholar
  6. 6.
    E. Rashba, Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267 (2000)CrossRefADSGoogle Scholar
  7. 7.
    D. Smith, R. Silver, Electrical spin injection into semiconductors. Phys. Rev. B 64, 045323 (2001)CrossRefADSGoogle Scholar
  8. 8.
    J. Albrecht, D. Smith, Electron spin injection at a Schottky contact. Phys. Rev. B 66, 113303 (2002)CrossRefADSGoogle Scholar
  9. 9.
    X. Jiang, R. Wang, R.M. Shelby, R.M. Macfarlane, S.R. Bank, J.S. Harris, S.S.P. Parkin, Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005)CrossRefADSGoogle Scholar
  10. 10.
    M. Ramsteiner, O. Brandt, T. Flissikowski, H.T. Grahn, \(\text{Co}_2\text{FeSi/GaAs}/(\text{Al,Ga})/{\text {As}}\) spin light-emitting diodes: competition between spin injection and ultrafast spin alignment. Phys. Rev. B 78, 121303 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Farshchi, M. Ramsteiner, Spin injection from Heusler alloys into semiconductors: a materials perspective. J. Appl. Phys. 113, 191101 (2013)CrossRefADSGoogle Scholar
  12. 12.
    M. Ziese, U. Köhler, A. Bollero, R. Höhne, P. Esquinazi, Schottky barrier and spin polarization at the \(\text{Fe}_{3}\text{O}_{4}-\text{Nb:SrTiO}_{3}\) interface. Phys. Rev. B 71, 180406 (2005)CrossRefGoogle Scholar
  13. 13.
    C. Boothman, A.M. Sánchez, S. van Dijken, Structural, magnetic, and transport properties of \(\text{Fe}_3\text{O}_4/\text{Si}(111)\) and \(\text{Fe}_3\text{O}_4/\text{Si}(001)\). J. Appl. Phys. 101, 123903 (2007)CrossRefGoogle Scholar
  14. 14.
    L.B. Zhao, W.B. Mi, E.Y. Jiang, H.L. Bai, Spin-polarized transport of electrons from polycrystalline \(\text{Fe}_{3}\text{O}_{4}\) to amorphous Si. Appl. Phys. Lett. 91, 052113 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Adhikari, A. Sarkar, G.R. Patta, A.K. Das, Magnetic diode exploiting giant positive magnetoresistance in ferrite/semiconductor heterostructures. Appl. Phys. Lett. 98, 183504 (2011)CrossRefADSGoogle Scholar
  16. 16.
    V.A. Samuilov, V.K. Ksenevich, G. Remenyid, G. Kiss, B. Pödör, Impact ionization breakdown of n-GaAs in high magnetic fields. Semicond. Sci. Tech. 14, 1084 (1999)CrossRefADSGoogle Scholar
  17. 17.
    H. Akinaga, M. Mizuguchi, Room-temperature thousandfold magnetoresistance change in MnSb granular films: magnetoresistive switch effect. Appl. Phys. Lett. 76, 357 (2000)CrossRefADSGoogle Scholar
  18. 18.
    Z.G. Sun, M. Mizuguchi, T. Manago, H. Akinaga, Magnetic-field-controllable avalanche breakdown and giant magnetoresistive effects in Gold/semi-insulating-GaAs Schottky diode. Appl. Phys. Lett. 85, 5643 (2004)CrossRefADSGoogle Scholar
  19. 19.
    M. Yokoyama, T. Ogawa, A.M. Nazmul, M. Tanaka, Large magnetoresistance (\(> 600\%\)) of a GaAs:MnAs granular thin film at room temperature. J. Appl. Phys. 99, 08D502 (2006)CrossRefGoogle Scholar
  20. 20.
    J.J. Schoonus, F.L. Bloom, W. Wagemans, H.J. Swagten, B. Koopmans, Extremely large magnetoresistance in Boron-doped silicon. Phys. Rev. Lett. 100, 127202 (2008)CrossRefADSGoogle Scholar
  21. 21.
    L.V. Lutsev, A.I. Stognij, N.N. Novitskii, Giant magnetoresistance in semiconductor/granular film heterostructures with cobalt nanoparticles. Phys. Rev. B 80, 40 (2009). (and references therein)CrossRefGoogle Scholar
  22. 22.
    A. Sarkar, S. Bhaumik, R. Adhikari, A.K. Das, Investigation of intrinsic stress and transport properties of Fe/p-Si(001) Schottky heterojunction. Int. J. Adv. Appl. Phys. Res. 1, 40–48 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Sarkar, R. Adhikari, A.K. Das, Development of a high vacuum cantilever beam magnetometer for measurement of mechanical and magnetic properties of thin films. Curr. Sci. 104, 826 (2013)Google Scholar
  24. 24.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall Inc, Upper Saddle River, 2001), pp. 167–171Google Scholar
  25. 25.
    S.-G. Cho, K.-H. Park, D.-H. Han, T.-U. Nahm, Study on the room-temperature oxidation of a Fe thin film on Pt(110). J. Korean Phys. Soc. 59, 105–109 (2011)CrossRefGoogle Scholar
  26. 26.
    P.M. Levy, Giant magnetoresistance in magnetic layered and granular materials. Science 256(5059), 972–973 (1992)CrossRefADSGoogle Scholar
  27. 27.
    R. Mallik, E.V. Sampathkumaran, P.L. Paulose, Large positive magnetoresistance at low temperatures in a ferromagnetic natural multilayer, \(\text{ LaMn}_2\text{Ge}_2\). Appl. Phys. Lett. 71, 2385 (1997). (and references thereon) CrossRefGoogle Scholar
  28. 28.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Influence of oxygen vacancies on the magnetic and electrical properties of \(\text{La}_{1-x}\text{Sr}_{x}\text{MnO}_{3-x/2}\) manganites. Eur. Phys. J. B 42, 51–61 (2004)CrossRefGoogle Scholar
  29. 29.
    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, Self-doped lanthanum manganites as a phase-separated system: transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909–9 (2008)CrossRefADSGoogle Scholar
  30. 30.
    V.M. Kalita, A.A. Timopheev, A.F. Lozenko, S.M. Ryabchenko, A.V. Los, O.V. Stognei, A.V. Sitnikov, Positive magnetoresistance in granular magnetic films with perpendicular anisotropy. J. Appl. Phys. 110, 113918 (2011)CrossRefADSGoogle Scholar
  31. 31.
    S.V. Trukhanov, Investigation of stability of ordered manganites. J. Exp. Theor. Phys. 101, 513 (2005)CrossRefADSGoogle Scholar
  32. 32.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, V.A. Ryzhov, H. Szymczak, R. Szymczak, M. Baran, Study of A-site ordered \(\text{PrBaMn}_2\text{O}_{6}\) manganite properties depending on the treatment conditions. J. Phys. Condens. Mater. 17, 6495–6506 (2005)CrossRefGoogle Scholar
  33. 33.
    T. Dietl, Handbook of Semiconductors. In: T.S. Moss, S. Mahajan (eds) (Nortn-Holland, New York), vol. 3, pp. 1279 (1994)Google Scholar
  34. 34.
    A. Fert, H. Jaffrés, Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001)CrossRefADSGoogle Scholar
  35. 35.
    S.P. Dash, S. Sharma, R.S. Patel, M.P. de Jong, R. Jansen, Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491 (2009)CrossRefADSGoogle Scholar
  36. 36.
    S.P. Dash, S. Sharma, J.C. Le Breton, J. Peiro, H. Jaffrès, J.-M. George, A. Lemaître, R. Jansen, Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface. Phys. Rev. B 84, 054410 (2011)CrossRefADSGoogle Scholar
  37. 37.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  38. 38.
    J.A. Peters, N. Rangaraju, C. Feeser, B.W. Wessels, Spin-dependent magnetotransport in a p-InMnSb/n-InSb magnetic semiconductor heterojunction. Appl. Phys. Lett. 98, 193506 (2011)CrossRefADSGoogle Scholar
  39. 39.
    J.F. Ankner, G.P. Felcher, Polarized-neutron reflectometry. J. Magn. Magn. Mater. 200, 741–754 (1999)CrossRefADSGoogle Scholar
  40. 40.
    C. Gusenbauer, T. Ashraf, J. Stangl, G. Hesser, T. Plach, A. Meingast, G. Kothleitner, R. Koch, Interdiffusion in Heusler film epitaxy on GaAs(001). Phys. Rev. B 83, 035319 (2011)CrossRefADSGoogle Scholar
  41. 41.
    A. Sarkar, S. Wang, W. Grafeneder, M. Arndt, R. Koch, Ultrathin MgO diffusion barriers for ferromagnetic electrodes on GaAs(001). Nanotechnology 26, 165203 (2015)CrossRefADSGoogle Scholar
  42. 42.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, Magnetic phase transitions in the anion-deficient \(\text{La}_{1-x}\text{Ba}_x\text{MnO}_{3-x/2}\) (\(0 \le x \le 0.50\)) manganites. J. Phys. Condens. Mater. 15, 1783–1795 (2003)CrossRefGoogle Scholar
  43. 43.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, Magnetotransport properties and mechanism of the A-site ordering in the Nd-Ba optimal-doped manganites. J. Low Temp. Phys. 149, 185–199 (2007)CrossRefADSGoogle Scholar
  44. 44.
    S.V. Trukhanova, A.V. Trukhanova, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, A.V. Trukhanova, E.L. Trukhanov, V.O. Natarov, A.M. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 42, 554–562 (2017)CrossRefADSGoogle Scholar
  45. 45.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.S. Kazakevich, A.V. Trukhanov, V.A. Turchenko, Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceram. Int. 43, 5635–5641 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of TechnologyKharagpurIndia
  2. 2.Forschungszentrum Jülich GmbHQuantum Materials and Collective Phenomena (JCNS-2/PGI-4)JülichGermany
  3. 3.Institut für Halbleiter- und FestkörperphysikJohannes Kepler UniversitätLinzAustria

Personalised recommendations