Applied Physics A

, 125:90 | Cite as

Influence of process parameter and strain rate on the dynamic compressive properties of selective laser-melted Ti-6Al-4V alloy

  • Zhicong Pang
  • Yang LiuEmail author
  • Ming Li
  • Chunli Zhu
  • Shuxin Li
  • Yonggang Wang
  • Di Wang
  • Changhui Song


Dynamic compressive mechanical responses of selective laser-melted Ti-6Al-4V alloy were studied in terms of the influences of scanning speed, building angle as well as impacting strain rate. It was found that the ultimate flow stress and energy absorption increased first and then dropped sharply as the scanning speed increased from 1.0 to 1.6 m/s, showing that the sample built at scanning speed of 1.2 m/s possessed the best dynamic mechanical properties. They increased straightly up as the building angle increased from 0° to 90°, but only the sample built at 45° ruptured with shearing fracture pattern. Moreover, the samples exhibited distinct strain rate hardening effect, as the applied strain rate increased from 900 to 2100/s, and the sample ruptured ultimately with mixed ductility/brittle fracture pattern. Volume fraction of LAGBs in samples increased from 9.1 to 18.9% and 21.4% after impacting at strain rates of 900/s and 2100/s, indicating that intenser dislocation was activated at a higher strain rate impacting, this is the main cause of enhancement in strength. This study provided an insight into the influence of high strain rate impact loading on the dynamic mechanical responses of SLMed TC4 alloy, which is conducive to further exploiting the performance potential of the SLMed materials.



This work was supported by the K.C. Wong Magna Fund in Ningbo University; Natural Science Foundation of Zhejiang Province (Grant Number LQ17E050001); Natural Science Foundation of Ningbo City (Grant Number 2017A610077); National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials of China (Grant Number 2017002); Science Challenge Project (Grant Number TZ2018001); National Natural Science Foundation of China (Grant Number 51775196).


  1. 1.
    D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2013)CrossRefGoogle Scholar
  2. 2.
    L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 58, 3303–3312 (2010)CrossRefGoogle Scholar
  3. 3.
    J.F. Sun, Y.Q. Yang, D. Wang, Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater. Design. 49, 545–552 (2013)CrossRefGoogle Scholar
  4. 4.
    H.Y. Chen, D.D. Gu, D.H. Dai, M.J. Xia, C.L. Ma, A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting. Mater. Lett. 227, 128–131 (2018)CrossRefGoogle Scholar
  5. 5.
    B. Song, Z.W. Wang, Q. Yan, Y.J. Zhang, J.L. Zhang, C. Cai, Q.S. Wei, Y.S. Shi, Integral method of preparation and fabrication of metal matrix composite: selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites. Mater. Sci. Eng. A 707, 478–487 (2017)CrossRefGoogle Scholar
  6. 6.
    C.L. Qiu, M.A. Kindi, A.S. Aladawi, I.A. Hatmi, A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci. Rep. 8, 7785 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    C.H. Song, M.K. Zhang, Y.Q. Yang, D. Wang, J.K. Yu, Morphology and properties of CoCrMo parts fabricated by selective laser melting. Mater. Sci. Eng. A 713, 206–213 (2018)CrossRefGoogle Scholar
  8. 8.
    D.Y. Zhang, Z. Feng, C.J. Wang, W.D. Wang, Z. Liu, W. Niu, Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting. Mater. Sci. Eng. A 724, 357–367 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Li, H. Hassanin, M.M. Attallah, N.J.E. Adkins, K. Essa, The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater. 105, 75–83 (2016)CrossRefGoogle Scholar
  10. 10.
    Q.Q. Han, Y.Q. Geng, R. Setchi, F. Lacan, D.D. Gu, S.L. Evans. Macro and nanoscale wear behaviour of Al-Al2O3 nanocomposites fabricated by selective laser melting. Compos. Part B Eng 127, 26–35 (2017)CrossRefGoogle Scholar
  11. 11.
    J.J. Yang, H.C. Yu, H.H. Yang, F.Z. Li, Z.M. Wang, X.Y. Zeng, Prediction of microstructure in selective laser melted Ti-6Al-4V alloy by cellular automaton. J. Alloy. Compd. 748, 281–290 (2018)CrossRefGoogle Scholar
  12. 12.
    W. Li, J. Liu, Y. Zhou, S. Li, S.F. Wen, Q.S. Wei, C.Z. Yan, Y.S. Shi, Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties. J. Alloy. Compd. 688, 626–636 (2016)CrossRefGoogle Scholar
  13. 13.
    Z. Zhao, J. Chen, H. Tan, G.H. Zhang, X. Lin, W.D. Huang, Achieving superior ductility for laser solid formed extra low interstitialTi-6Al-4V titanium alloy through equiaxial alpha microstructure. Scr. Mater. 146, 187–191 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, D. Trimble, Optimization of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. Int. J. Mach. Tool Manuf. 128, 1–20 (2018)CrossRefGoogle Scholar
  15. 15.
    Y.J. Liang, H.M. Wang, Influence of prior-beta-grain size on tensile strength of a laser-deposited alpha/beta titanium alloy at room and elevated temperatures. Mater. Sci. Eng. A 622, 16–20 (2015)CrossRefGoogle Scholar
  16. 16.
    X.Z. Shi, S.Y. Ma, C.M. Liu, Q.R. Wu, Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt. Laser Technol. 90, 71–79 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    X.J. Nie, H. Zhang, H.H. Zhu, Z.H. Hu, L.D. Ke, X.Y. Zeng, Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples. J. Mater. Process. Technol. 256, 69–77 (2018)CrossRefGoogle Scholar
  18. 18.
    Y.S. Wang, G.J. Hao, J.W. Qiao, Y. Zhang, J.P. Lin, High strain rate compressive behavior of Ti-based metallic glass matrix composites. Intermetallics 52, 138–143 (2014)CrossRefGoogle Scholar
  19. 19.
    D.G. Lee, Y.H. Lee, S. Lee, C.S. Lee, S.M. Hur, Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy having equiaxed and bimodal microstructures. Metall. Mater. Trans. A 35A, 3103–3112 (2004)CrossRefGoogle Scholar
  20. 20.
    J. Wen, C. Liu, H. Yao, B. Wu, A nonlinear dynamic model and parameters identification method for predicting the shock pulse of rubber waveform generator. Int. J. Impact Eng. 120, 1–15 (2018)CrossRefGoogle Scholar
  21. 21.
    H. Asgari, A. Odeshi, K. Hosseinkhani, M. Mohammadi, On dynamic mechanical behavior of additively manufactured AlSi10Mg_200C. Mater. Lett. 211, 187–190 (2018)CrossRefGoogle Scholar
  22. 22.
    N. Biswas, J.L. Ding, V.K. Balla, D.P. Field, A. Bandyopadhyay, Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Mater. Sci. Eng. A 549, 213–221 (2012)CrossRefGoogle Scholar
  23. 23.
    E. Zaretsky, A. Stern, N. Frage, Dynamic response of AlSi10Mg alloy fabricated by selective laser melting. Mater. Sci. Eng. A 688, 364–370 (2017)CrossRefGoogle Scholar
  24. 24.
    O.L. Rodriguez, P.G. Allison, W.R. Whittington, D.K. Francis, O.G. Rivera, K. Chou, X. Gong, T.M. Butler, J.F. Burroughs, Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V. Mater. Sci. Eng. A 641, 323–327 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Seo, S.C. Woo, T.W. Kim, Y.S. Lee, Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy. J. Mech. Sci. Technol. 29, 5223–5232 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Yao, T. Suo, S.Y. Zhang, F. Zhao, H.T. Wang, J.B. Liu, Y.Z. Chen, Y.L. Li, Influence of heat-treatment on the dynamic behavior of 3D laser-deposited Ti-6Al-4V alloy. Mater. Sci. Eng. A 67, 153–162 (2016)CrossRefGoogle Scholar
  27. 27.
    P.H. Li, W.G. Guo, W.D. Huang, Y. Su, K.B. Xi. Lin, Yuan, Thermomechanical response of 3D laser-deposited Ti-6Al-4V alloy over a wide range of strain rates and temperatures. Mater. Sci. Eng. A 647, 34–42 (2015)CrossRefGoogle Scholar
  28. 28.
    S.H. Mohammadhosseini, D. Masood, M. Fraser, Jahedi, Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading. Adv. Manuf. 3(3), 232–243 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Hadadzadeh, B.S. Amirkhiz, A. Odeshi, M. Mohammadi, Dynamic loading of direct metal laser sintered AlSi10Mg alloy: strengthening behavior in different building directions. Mater. Des. 159, 201–211 (2018)CrossRefGoogle Scholar
  30. 31.
    X.Y. Niu, Y.J. Yu, L.H. Ma, L.B. Chen, Experimental study on the dynamic mechanical properties of titanium alloy after thermal oxidation. Appl. Phys. A 122, 597 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    M.K. Zhang, Y.Q. Yang, D. Wang, Z.F. Xiao, C.H. Song, C.W. Weng, Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting. Mater. Sci. Eng. A 736, 288–297 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Wang, Y.D. Liu, W.T. Shi, B. Qi, J. Yang, F.F. Zhang, D. Han, Y.Y. Ma. Research on high layer thickness fabricated of 316L by selective laser melting. Materials 10(9), 1055 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    J. Marchand, A. Duffy, An experimental study of the formation process of adiabatic shear bands in a structural steel. J. Mech. Phys. Solids 36, 251–283 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    A. Molinari, C. Musquar, G. Sutter, Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling. Int. J. Plast. 18(4), 443–459 (2002)CrossRefGoogle Scholar
  35. 35.
    Z.B. Zhao, Q.J. Wang, J.R. Liu, R. Yang, Effect of heat treatment on the crystallographic orientation evolution in a near-a titanium alloy Ti60. Acta Mater. 131, 305–314 (2017)CrossRefGoogle Scholar
  36. 36.
    Y.J. Gu, Y. Xiang, D.J. Srolovitz, J.A.E. Awady, Self-healing of low angle grain boundaries by vacancy diffusion and dislocation climb. Scr. Mater. 155, 155–159 (2018)CrossRefGoogle Scholar
  37. 37.
    K.W. Wei, Z.M. Wang, X.Y. Zeng, Effect of heat treatment on microstructure and mechanical properties of the selective laser melting processed Ti-5Al-2.5Sn α titanium alloy. Mater. Sci. Eng. A 709, 301–311 (2018)CrossRefGoogle Scholar
  38. 38.
    Q. Xue, G.T. Gray, III, Development of adiabatic shear bands in annealed 316L stainless steel Part II. TEM studies of the evolution of microstructure during deformation localization. Metall. Mater. Trans. A 37A, 2447–2457 (2006)CrossRefGoogle Scholar
  39. 39.
    S.X. Li, P.C. Zhao, Y.N. He, S.R. Yu, Microstructural evolution associated with shear location of AISI 52100 under high strain rate loading. Mater. Sci. Eng. A 662, 46–53 (2016)CrossRefGoogle Scholar
  40. 40.
    Z.W. Zhang, J.L. Wang, Q.L. Zhang, S.P. Zhang, Q.N. Shi, H.R. Qi. Research on grain refinement mechanism of 6061 aluminum alloy processed by combined SPD methods of ECAP and MAC. Materials, 11 (2018) 1246ADSCrossRefGoogle Scholar
  41. 41.
    Z. Zhao, J. Chen, S. Guo, H. Tan, X. Lin, W.D. Huang, Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti-6Al-4V titanium alloy. J. Mater. Sci. Technol. 33, 675–681 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhicong Pang
    • 1
  • Yang Liu
    • 1
  • Ming Li
    • 1
  • Chunli Zhu
    • 1
  • Shuxin Li
    • 1
  • Yonggang Wang
    • 1
  • Di Wang
    • 2
  • Changhui Song
    • 2
  1. 1.Faculty of Mechanical Engineering and MechanicsNingbo UniversityNingboChina
  2. 2.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations