Applied Physics A

, 125:52 | Cite as

Nature-inspired synthesis of ZrO2:Dy3+ viable for WLED applications

  • D. PrakashbabuEmail author


Dy3+ (1 mol%)-doped zirconium oxide (ZrO2) nanopowders were synthesized using the plant latex of Plumeria rubra. The effect of a certain amount of plant latex on the chemical composition, crystal structure and photoluminescence properties of the nanophosphors was investigated. Crystalline structure and size was analysed using XRD spectra, while TEM was taken as a supporting evidence for the particle size calculated using XRD. The band gap of the samples was obtained from Wood and Tauc plot. Scanning electron microscopy analysis reveals the formation of porous powders with a large amount of voids. Room temperature photoluminescence shows visible luminescence of the phosphors under near UV excitation. Furthermore, latex volume influences the PL emission intensity to a great extent. The colour purity of the phosphors was confirmed by Commission Internationale de l’Eclairage (CIE) coordinates. Thermoluminescence studies revealed variation in TL intensity with change in the latex volume used for preparation. TL intensity variation revealed a linear response for a dose range of 1–5 kGy of γ-ray irradiation. This study demonstrates an efficient and simple procedure for the preparation of novel colour tuneable nanophosphors suitable to be used in white light–emitting LEDs and an efficient TL dosimetric material.


  1. 1.
    D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, S.L. Rudaz, IEEE J. Select. Top. Quantum Electron. 8(2), 310–320 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    C.-H. Huang, T.-M. Chen, Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index. Inorg. Chem. 50(12), 5725–5730 (2011)CrossRefGoogle Scholar
  3. 3.
    Z. Zhang, A. Song, X. Shen, Q. Lian, X. Zheng, A novel white emission in Ba10F2(PO4)6: Dy3+ single-phase full-color phosphor. Mater. Chem. Phys. 151, 345–350 (2015)CrossRefGoogle Scholar
  4. 4.
    Z. Xia, J. Zhou, Z. Mao, Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes. J. Mater. Chem. C 1(37), 5917–5924 (2013)CrossRefGoogle Scholar
  5. 5.
    G. Siddaramana Gowd, M.K. Patra, S. Songara, A. Shukla, M. Mathew, S.R. Vadera, N. Kumar, Effect of doping concentration and annealing temperature on luminescence properties of Y2O3:Eu3+ nanophosphor prepared by colloidal precipitation method. J. Lumin. 132(8), 2023–2029 (2012)CrossRefGoogle Scholar
  6. 6.
    R.L. Kohale, S.J. Dhoble, Development of Dy3+ activated K2MgP2O7 pyrophosphate phosphor for energy saving lamp. J. Lumin. 138, 153–156 (2013)CrossRefGoogle Scholar
  7. 7.
    D. Xue, J. Zhang, C. Yang, T. Wang, PL and EL characterizations of ZnO:Eu3+, Li+ films derived by sol–gel process. J. Lumin. 128(4), 685–689 (2008)CrossRefGoogle Scholar
  8. 8.
    N. Shibata, J. Katamura, A. Kuwabara, Y. Ikuhara, T. Sakuma, The instability and resulting phase transition of cubic zirconia. Mater. Sci. Eng. A 312(1–2), 90–98 (2001)CrossRefGoogle Scholar
  9. 9.
    S. Ponkumar, K. Janaki, D. Prakashbabu, H.B. Ramalingam, T.V.M. Sreekanth, K. Munirathnam, ZrO2:Sm3+ nanophosphor: synthesis, Rietveld refinement, optical and thermoluminescent properties. Appl. Phys. A 124, 134 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull. 46, 2560–2566 (2011)CrossRefGoogle Scholar
  11. 11.
    B. Ankamwar, M. Chaudhary, M. Sastry, Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg Met. Org. Nano Met. Chem. 35(1), 19–26 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Shiv Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275(2), 496–502 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiago, M. Jose Yacaman, Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2(4), 397–401 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, H. Xin Yang, Wang et al., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10), 105104 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    S. Shiv Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3(7), 482 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    C. Balaprasad Ankamwar, A. Damle, Ahmad, M. Sastry, Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotechnol. 5(10), 1665–1671 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Chandrasekhar, H. Nagabhushana, S.C. Sharma, N. Dhananjaya, D.V. Sunitha, C. Shivakumara, B.M. Nagabhushana, Particle size, morphology and color tunable ZnO:Eu3+ nanophosphors via plant latex mediated green combustion synthesis. J. Alloy. Compd. 584, 417–424 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Malleshappa, H. Nagabhushana, S.C. Prashantha, S.C. Sharma, N. Dhananjaya, C. Shivakumara, B.M. Nagabhushana, Eco-friendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+ nanophosphors using E. tirucalli plant latex. J. Alloy. Compd. 612, 425–434 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.S. Vidya, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, Euphorbia tirucalli mediated green synthesis of rose like morphology of Gd2O3:Eu3+ red phosphor: structural, photoluminescence and photocatalytic studies. J. Alloy. Compd. 619, 760–770 (2015)CrossRefGoogle Scholar
  20. 20.
    P.M. Abdala, M.C. a Fantini, A.F. Craievich, D.G. Lamas, Crystallite size-dependent phases in nanocrystalline ZrO(2)–Sc(2)O(3). Phys. Chem. Chem. Phys. 12(12), 2822–2829 (2010)CrossRefGoogle Scholar
  21. 21.
    B. Umesh, B. Eraiah, H. Nagabhushana, S.C. Sharma, D.V. Sunitha, B.M. Nagabhushana, C. Shivakumara, J.L. Rao, R.P.S. Chakradhar, Thermoluminescence and EPR studies of nanocrystalline Nd2:O3:Ni2+ phosphor. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 93, 228–234 (Jul. 2012)ADSCrossRefGoogle Scholar
  22. 22.
    H. Sahu, Ranjan, G. Ranga Rao, Characterization of combustion synthesized zirconia powder by UV–vis, IR and other techniques. Bull. Mater. Sci. 23(5), 349–354 (2000)CrossRefGoogle Scholar
  23. 23.
    I. John Berlin, V. Ganesan, P.V. Thomas, K. Joy, Effect of Mn doping on the structural and optical properties of ZrO2 thin films prepared by sol–gel method. Thin Solid Films 550, 199–205 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S. Chen, J. Lin, J. Wu, Facile synthesis of Y2O3:Dy3+ nanorods and its application in dye-sensitized solar cells. Appl. Surf. Sci. 293, 202–206 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    S.F. Wang, F. Gu, M.K. Lü, X.F. Cheng, W.G. Zou, G.J. Zhou, S.M. Wang, Y.Y. Zhou, Synthesis and photoluminescence characteristics of Dy3+-doped ZnAl2O4 nanocrystals via a combustion process. J. Alloy. Compd. 394(1–2), 255–258 (2005)CrossRefGoogle Scholar
  26. 26.
    X. Liu, B. Liu, M. Gu, L. Xiao, X. Xu, Highly enhanced photoluminescence and X-ray excited luminescence of Li doped Gd2O3:Eu3+ thin films. Solid State Commun. 137, 162–165 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    T. Verma, S. Agrawal, Photoluminescent and thermoluminescent studies of Dy3+ and Eu3+ doped Y2O3 phosphors. J. Fluoresc. 28(1), 453–464 (2018)CrossRefGoogle Scholar
  28. 28.
    McCamy, C.S.: Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17(2), 142–144 (1992)CrossRefGoogle Scholar
  29. 29.
    A.A. Finch, J. Garcia-Guinea, D.E. Hole, P.D. Townsend, J.M. Hanchar, Ionoluminescence of zircon: rare earth emissions and radiation damage. J. Phys. D Appl. Phys. 37(20), 2795 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    K. Munirathnam, G.R. Dillip, B. Deva Prasad Raju, S.W. Joo, S.J. Dhoble, B.M. Nagabhushana, R. Hari Krishna, K.P. Ramesh, S. Varadharaj Perumal, D. Prakashbabu, Synthesis, photoluminescence and Judd–Ofelt parameters of LiNa3P2O7:Eu3+ orthorhombic microstructures. Appl. Phys. A 120(4), 1615–1623 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Cong, B. Li, S. Yue, Di Fan, W. Xiao-jun, Effect of oxygen vacancy on phase transition and photoluminescence properties of nanocrystalline zirconia synthesized by the one-pot reaction. J. Phys. Chem. C 113(31), 13974–13978 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Trojan-Piegza, J. Niittykoski, J. Hölsä, E. Zych, Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+, Ca2+-codoped Lu2O3 materials. Chem. Mater. 20(6), 2252–2261 (2008)CrossRefGoogle Scholar
  33. 33.
    R. Hari Krishna, B.M. Nagabhushana, H. Nagabhushana, N. Suriya Murthy, S.C. Sharma, C. Shivakumara, R.P.S. Chakradhar, Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor. J. Phys. Chem. C 117(4), 1915–1924 (2013)CrossRefGoogle Scholar
  34. 34.
    V. Chernov, A. Belykh, R. Meléndrez, M. Barboza-Flores, Beta radiation induced thermoluminescence in pure ZrO2 prepared by sol–gel. J. Non Cryst. Solids 352(23–25), 2543–2547 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    R. Chen, Y. Kirish, Analysis of Thermally Stimulated Processes (Pergamon, New York, 1981)Google Scholar
  36. 36.
    D. Prakashbabu, R. Hari Krishna, B.M. Nagabhushana, H. Nagabhushana, C. Shivakumara, R.P.S. Chakradar, H.B. Ramalingam, S.C. Sharma, R. Chandramohan, Low temperature synthesis of pure cubic ZrO2 nanopowder: structural and luminescence studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 216–222 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.REVA UniversityBangaloreIndia

Personalised recommendations