Applied Physics A

, 125:53 | Cite as

An investigation on the thermo-mechanical properties of boron-doped g-C3N4

  • Ahmet Emin Senturk
  • Ahmet Sinan Oktem
  • Alp Er S. KonukmanEmail author


Graphitic carbon nitride (g-C3N4) has been receiving special attention because of its significant physical properties and wide application areas. In this study, using molecular dynamics (MD) simulations, the mechanical properties and thermal conductivity (TC) of boron (B)-doped g-C3N4 (B-g-C3N4) were systematically investigated for two different cases. In the first case, B atoms were substituted at five specific (C1, C2, N1, N2, and N3) sites. The results of MD simulations indicated that when the B-doping concentration was increased, the mechanical properties of B-g-C3N4 at the C2 site improved. However, other B-doping sites did not show a positive effect on the mechanical properties of g-C3N4. In addition, the TC of B-g-C3N4 at these sites decreased by increasing the B concentration of B doping. When both results were evaluated, B-g-C3N4 at the C2 site was found to be the most mechanically and thermodynamically favorable site, whereas B doping at the N3 site the most unfavorable. In the second case, B atoms were occupied at three specific (B1, B2, and B3) sites in the open hollow of g-C3N4. The results of this study showed that the mechanical properties of B-g-C3N4 at these sites improved with the increasing B concentration. However, the TC of B doping at the B2 site of the g-C3N4 decreased. In addition, the TC of B-g-C3N4 at the B1 and B3 sites showed similar behavior, and also the variation in the TC between these two sites and undoped g-C3N4 indicated a small change with the increasing B concentration. The results of MD simulations of both situations demonstrated that the location of the B3 site was the most suitable B-doping site for the mechanical properties and TC of g-C3N4. On the other hand, the most thermodynamically and mechanically unfavorable site was specified as B2. The results of this study may be considered helpful for future works of mechanical and thermal management of B-carbonitride materials.



This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant number: 118M726.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    N. Gao, G.Y. Lu, Z. Wen, Q. Jiang, J. Mater. Chem. C 3, 627 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321(5887), 385 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    T.B. Martins, R.H. Miwa, A.J. da Silva, A. Fazzio, Phys. Rev. Lett. 98(19), 196803 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    A. Lherbie, X. Blase, Y.M. Niquet, F. Triozon, S. Roche, Phys. Rev. Lett. 101(3), 036808 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100(20), 206803 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A. Hashmi, U. Farooq, J. Hong, Curr. Appl. Phys. 16(3), 318 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    N. Gao, J.C. Li, Q. Jiang, Phys. Chem. Chem. Phys. 16(23), 11673 (2014)CrossRefGoogle Scholar
  12. 12.
    B. You, X. Wang, Z. Zheng, W. Mi, Phys. Chem. Chem. Phys. 18(10), 7381 (2016)CrossRefGoogle Scholar
  13. 13.
    M.V. Medvedyeva, Y.M. Blanter, Phys. Rev. B 83, 045426 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, B. Huang, ACS Nano 6(2), 1695 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Algara-Siller, N. Severin, S.Y. Chong, T. Björkman, R.G. Palgrave, A. Laybourn, M. Antonietti, Y.Z. Khimyak, A.V. Krasheninnikov, J.P. Rabe, U. Kaiser, A.I. Cooper, A. Thomas, M.J. Bojdys, Angew. Chem. 53(29), 7450 (2014)CrossRefGoogle Scholar
  16. 16.
    D.M. Teter, R.J. Hemley, Science 271(5245), 53 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Xu, S.-P. Gao, Int. J. Hydrog. Energy 37(15), 11072 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schlögl, J.M. Carlsson, J. Mater. Chem. 18(41), 4893 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Hong, X. Xia, Y. Wang, R. Xu, J. Mater. Chem. 22(30), 15006 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Chen, C. Tan, H. Zhang, L. Wang, Chem. Soc. Rev. 44(9), 2681 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Energy Environ. Sci. 5, 6717 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S.C. Smith, M. Jaroniec, G.Q. Lu, S.Z. Qiao, J. Am. Chem. Soc. 133(50), 20116 (2011)CrossRefGoogle Scholar
  24. 24.
    D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew. Chem. 53(35), 9240 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Wirth, R. Neumann, M. Antonietti, P. Saalfrank, Phys. Chem. Chem. Phys. 16, 15917 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Ye, R. Wang, M.-Z. Wu, Y.-P. Yuan, Appl. Surf. Sci. 358, 15 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    W.C. Peng, X.Y. Li, Catal. Commun. 49, 63 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Li, Y. Zhao, L. Fang, R. Jin, Y. Yang, Y. Xing, Mater. Lett. 126, 5 (2014)CrossRefGoogle Scholar
  29. 29.
    S.W. Cao, J.X. Low, J.G. Yu, M. Jaroniec, Adv. Mater. 27(13), 2150 (2015)CrossRefGoogle Scholar
  30. 30.
    F. He, G. Chen, Y. Zhou, Y. Yu, L. Li, S. Hao, B. Liu, J. Mater. Chem. A 4(10), 3822 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Dang, X. Zhang, W. Zhang, X. Dong, G. Wang, C. Ma, X. Zhang, H. Ma, M. Xue, RSC Adv. 5(20), 15052 (2015)CrossRefGoogle Scholar
  32. 32.
    W. Shi, F. Guo, J. Chen, G. Che, X. Lin, J. Alloys Compd. 612, 143 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Wu, J.M. Yan, X.N. Tang, M. Zhao, Q. Jiang, ChemSusChem 7(9), 2654 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y. Zhu, J. Phys. Chem. C 116(44), 23485 (2012)CrossRefGoogle Scholar
  35. 35.
    Z. Zhao, H. Dai, Y. Du, J. Deng, L. Zhang, F. Shi, Mater. Chem. Phys. 128(3), 348 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Samanta, S. Martha, K. Parida, ChemCatChem 6(5), 1453 (2014)Google Scholar
  37. 37.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26(6), 3894 (2010)CrossRefGoogle Scholar
  38. 38.
    G. Dong, K. Zhao, L. Zhang, Chem. Commun. 48(49), 6178 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, Chem. Commun. 48(98), 12017 (2012)CrossRefGoogle Scholar
  40. 40.
    S.Z. Hu, L. Ma, J.G. You, F.Y. Li, Z.P. Fan, F. Wang, D. Liu, J. Gui, RSC Adv. 4(41), 21657 (2014)CrossRefGoogle Scholar
  41. 41.
    L. Sun, Y. Qi, C.-J. Jia, Z. Jin, W. Fan, Nanoscale 6(5), 2649 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu, Z. Le, S. Jiang, S. Song, Appl. Surf. Sci. 360, 1016 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    S. Thaweesak, S. Wang, M. Lyu, M. Xiao, P. Peerakiatkhajohn, L. Wang, Dalton Trans. 46(32), 10714 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Energy Environ. Sci. 8(12), 3708 (2015)CrossRefGoogle Scholar
  45. 45.
    G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc. 132(33), 11642 (2010)CrossRefGoogle Scholar
  46. 46.
    Z.F. Huang, J. Song, L. Pan, Z. Wang, X.Q. Zhang, J. Zou, W. Mi, X.W. Zhang, L. Wang, Nano Energy 12, 646 (2015)CrossRefGoogle Scholar
  47. 47.
    Y. Li, S. Wu, L. Huang, J. Wang, H. Xu, H. Li, Mater. Lett. 137, 281 (2014)CrossRefGoogle Scholar
  48. 48.
    L. Ruan, G. Xu, L. Gu, C. Li, Y. Zhu, Y. Lu, Mater. Res. Bull. 66, 156 (2015)CrossRefGoogle Scholar
  49. 49.
    S. Martha, A. Nashim, K. Parida, J. Mater. Chem. A 1(26), 7816 (2013)CrossRefGoogle Scholar
  50. 50.
    Accelrys Inc. Materials studio. Accelrys Inc., San Francisco. (2018). Accessed 26 Dec 2018
  51. 51.
    S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    J. Tersoff, Phys. Rev. B 37(12), 6991 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    J. Tersoff, Phys. Rev. Lett. 61(25), 2879 (1988)ADSCrossRefGoogle Scholar
  54. 54.
    L. Lindsay, D.A. Broido, Phys. Rev. B 81(20), 205441 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    K. Matsunaga, C. Fisher, H. Matsubara, Jpn. J. Appl. Phys. 39, 48 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    J. Tersoff, Phys. Rev. B 39(8), 5566 (1989)ADSCrossRefGoogle Scholar
  57. 57.
    A.E. Senturk, A.S. Oktem, A.E.S. Konukman, J. Mol. Model. 24(2), 43 (2018)CrossRefGoogle Scholar
  58. 58.
    A.E. Senturk, A.S. Oktem, A.E.S. Konukman, J. Mol. Model. 23(8), 247 (2017)CrossRefGoogle Scholar
  59. 59.
    J.B. Kınacı, C. Haskins, T. Sevik, Çağın, Phys. Rev. B 86(11), 115410 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    W.G. Hoover, Phys. Rev. A 31(3), 1695 (1985)ADSCrossRefGoogle Scholar
  61. 61.
    B. Mortazavi, G. Cuniberti, T. Rabczuk, Comput. Mater. Sci. 99, 285 (2015)CrossRefGoogle Scholar
  62. 62.
    B. Mortazavi, S. Ahzi, Solid State Commun. 152(15), 1503 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ahmet Emin Senturk
    • 1
  • Ahmet Sinan Oktem
    • 1
  • Alp Er S. Konukman
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringGebze Technical UniversityGebzeTurkey

Personalised recommendations