Applied Physics A

, 125:43 | Cite as

Effect of Zr substitution on the microstructure and magnetic properties of CuFeO2 ceramics

  • Haiyang Dai
  • Fengjiao Ye
  • Tao Li
  • Gaoshang Gong
  • Liuting Gu
  • Ke Peng
  • Zhenping ChenEmail author


To specify the modulating mechanism of Zr substitution on the microstructure and magnetic properties of the delafossite type oxides CuFe1−xZrxO2 (x = 0–0.10), the multiferroic ceramics are synthesized by the solid-state reaction method. The microstructure and properties of the obtained samples are characterized by X-ray diffraction, scanning electron microscope, Raman spectroscopy, positron annihilation lifetime spectra and physical property measurement system. The XRD results indicate that all samples form delafossite structure, and Zr4+ substitution induces the shift of the main diffraction peaks. SEM measurements demonstrate that Zr substitution suppresses the grain growth. Raman spectra results show that Zr substitution changes the degree of polarization and intragranular stress for the CuFe1−xZrxO2 samples. Positron annihilation results suggest that vacancy-type defects exist in all samples, and the concentration and size of defects are influenced significantly by Zr substitution. The M–T curves of all samples display two successive magnetic transition temperatures TN1 and TN2, and the substitution of Zr for Fe tends to suppress the low ferromagnetic interactions in the magnetic structure. Simultaneously, all samples exhibit macroscopic weak ferromagnetic behavior at low temperature.



This work is supported by the National Natural Science Foundation of China (Project nos. 11675149, 11775192).


  1. 1.
    T. Elkhouni, M. Amami, C.V. Colin, A.B. Salah, Mater. Res. Bull. 53, 15 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Mori, M. Hachisu, T. Yamazaki, Y. Ichiyanagi, J. Appl. Phys. 117, 17C756 (2015)CrossRefGoogle Scholar
  3. 3.
    L.R. Shi, Z. Jin, B.R. Chen, N.M. Xia, H.K. Zuo, Y.S. Wang, Z.W. Ouyang, Z.C. Xia, J. Magn. Magn. Mater. 372, 7 (2014)CrossRefADSGoogle Scholar
  4. 4.
    S. Seki, Y. Yamasaki, Y. Shiomi, S. Iguchi, Y. Onose, Y. Tokura, Phys. Rev. B 75, 100403 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Y. Narumi, T. Nakamura, H. Ikeno, N. Terada, T. Morioka, K. Saito, H. Kitazawa, K. Kindo, H. Nojiri, J. Phys. Soc. Jpn. 85, 114705 (2016)CrossRefADSGoogle Scholar
  6. 6.
    T. Elkhoun, M. Amami, E.K. Hlil, A.B. Salah, J. Supercond. Nov. Magn. 28, 1439 (2015)CrossRefGoogle Scholar
  7. 7.
    B. Kundys, A. Maignan, D. Pelloquin, C. Simon, Solid. State. Sc. 11, 1035 (2009)CrossRefADSGoogle Scholar
  8. 8.
    N.Terada, T.Nakajima, S.Mitsuda, H., K. Kitazawa, N. Kaneko, Metoki, Phys. Rev. B 78, 014101–014101 (2008)CrossRefADSGoogle Scholar
  9. 9.
    K. Hayashi, R. Fukatsu, T. Nozaki, Y. Miyazaki, T. Kajitani, Phys. Rev. B 87, 064418 (2013)CrossRefADSGoogle Scholar
  10. 10.
    Y. Hongaromkij, C. Rudradawong, C. Ruttanapun, J. Mater. Sci. Mater. Electron. 27, 6438 (2016)CrossRefGoogle Scholar
  11. 11.
    G.F. Cheng, W. Liu, Z.W. Liu, X.S. Wu, J. Magn. Magn. Mater. 382, 179 (2015)CrossRefADSGoogle Scholar
  12. 12.
    O. Cojocaru-Miredin, P.-P. Choi, D. Abou-Ras, S.S. Schmidt, R. Caballero, D. Raabe, IEEE J. Photovolt. 1, 207 (2011)CrossRefGoogle Scholar
  13. 13.
    N. Terada, D.D. Khalyavin, P. Manuel, T. Osakabe, P.G. Radaelli, H. Kitazawa, Phys. Rev. B 89, 220403 (2014)CrossRefADSGoogle Scholar
  14. 14.
    N.P. Salke, K. Kamali, T.R. Ravindran, G. Balakrishnan, R. Rao, Vib. Spectrosc. 81, 112 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Shojan, A. Pavunny, R.S. Kumar, Katiyar, J. Appl. Phys. 107, 013522 (2010)CrossRefADSGoogle Scholar
  16. 16.
    T. Elkhoun, M. Amami, E.K. Hlil, A. Ben Salah, J. Supercond. Nov. Magn. 28, 1439 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.H. Chuai, B. Hu, Y.D. Li, H.Z. Shen, C.T. Zheng, Y.D. Wang, J. Alloy. Compd. 627, 299 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Li, J. Chen, D.W. Liu, Z.X. Z hang, Z.P. Chen, Z. Li, X.Z. Cao, B.Y. Wang, Ceram. Int. 40, 9061 (2014)CrossRefGoogle Scholar
  19. 19.
    T. Li, Y.C. Xue, Z. Chen, F.G. Chang, Mater. Sci. Eng. B. 158, 58 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Fu, Y. Zhang, H. Liu, D. Yi, B. Wang, Y. Jiang, Z. Chen, N. Qi, J. Mater. Sci. Technol. 34, 335 (2018)CrossRefGoogle Scholar
  21. 21.
    R.Z. Xue, Z.P. Chen, Y.C. Xue, H.Y. Dai, T. Li, J. Chen, J. Supercond. Nov. Magn. 27, 1201 (2013)CrossRefGoogle Scholar
  22. 22.
    W.N. Ge, X.N. Li, J.P. Xu, S.J. Huang, J.D. Liu, Z. Zhu, Z.P. Fu, Y.L. Lu, B.J. Ye, Nucl. Instrum. Methods B. 394, 61 (2017)CrossRefADSGoogle Scholar
  23. 23.
    H.F. He, X.F. Li, Z.Q. Chen, Y. Zheng, D.W. Yang, X.F. Tang, J. Phys. Chem. C 118, 2389 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.W. Zhou, W.W. Xu, J.J. Li, C.S. Yin, Y. Liu, B. Zhao, Z.Q. Chen, C.Q. He, W.F. Mao, K. Ito, J. Appl. Phys. 123, 025706 (2018)CrossRefADSGoogle Scholar
  25. 25.
    H.Y. Dai, L.T. Gu, X.Y. Xie, T. Li, Z.P. Chen, Z.J. Li, J. Mater Sci. Mater. Electron. 29, 2275 (2017)CrossRefGoogle Scholar
  26. 26.
    R.Z. Xue, G.Y. Zhao, J. Chen, Z.P. Chen, D.W. Liu, Mater. Res. Bull. 76, 124 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Dai, F.J. Ye, Z.P. Chen, T. Li, D.W. Liu, J. Alloy. Compd. 734, 60 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Pattanayak, R.N.P. Choudhary, P.R. Das, S.R. Shannigrahi, Ceram. Int. 40, 7983 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haiyang Dai
    • 1
  • Fengjiao Ye
    • 1
  • Tao Li
    • 1
  • Gaoshang Gong
    • 1
  • Liuting Gu
    • 1
  • Ke Peng
    • 1
  • Zhenping Chen
    • 1
    Email author
  1. 1.School of Physics and Electronic EngineeringZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations