Applied Physics A

, 125:62 | Cite as

Local dielectric environment-dependent plasmonic optical sensitivity of gold nanocage: from nanobox to nanoframe

  • Jian ZhuEmail author
  • Jiang-Kuan Chen
  • Jian-Jun Li
  • Jun-Wu ZhaoEmail author
Rapid communication


In this study, a gold nanobox with 40 nm edge length has been transformed into nanoframe gradually by increasing the square-hole length in each {100} facet of the hexahedron. The local dielectric environment-dependent plasmon spectra and refractive index sensitivity of this face-holed single gold nanocage were investigated based on the discrete dipole approximation method. Both the redshift of the resonance peak position and the sensitivity factor increased near exponentially with increasing hole length, which could be attributed to the changing of hot regions of plasmonic field coupling. Moreover, the shift of their resonance peak position to the refractive index of environmental medium increased linearly, and the face-holed nanocage-based sensor shows an excellent sensitivity factor of 955.7 nm/RIU [figure of merit (FOM) = 3.58]. It was also noticed that the non-monotonic transform of the local field enhancement factor (|E/E0|) with a maximum of 80.9 is also extremely affected by the refractive index. The physical mechanism discussed herein may be that the polarized field in local dielectric environment becomes intense as the refractive index increases, resulting in an improvement of field enhancement factor on the corners. We therefore believe that the square-hole length of {100} facets could enhance the plasmonic optical sensitivity of nanocage-based nanoparticles.



This work was supported by the National Natural Science Foundation of China under Grant no. 11774283.

Supplementary material

339_2018_2353_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2720 KB)


  1. 1.
    C.H. Zhang, J. Zhu, J.J. Li, J.W. Zhao, J. Appl. Phys. 117, 063102 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    A. Derkachova, K. Kolwas, I. Demchenko, Plasmonics 11, 941 (2016)CrossRefGoogle Scholar
  3. 3.
    C.L. Nehl, J.H. Hafner, J. Mater. Chem. 18, 2415 (2008)CrossRefGoogle Scholar
  4. 4.
    E. Ringe, J.M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G.C. Schatz, L.D. Marks, R.P. Van Duyne, J. Phys. Chem. C 114, 12511 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Zhu, X.C. Deng, Sens. Actuators B 155, 843 (2011)CrossRefGoogle Scholar
  6. 6.
    S.J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A.D. Pris, K.H. An, W.P. Hall, R.A. Potyrailo, J. Opt. Soc. Am. A 29, 994 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    H. Chatterjee, S.K. Ghosh, J. Phys. Chem. C 121, 22310 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Zhu, F. Zhang, J.J. Li, J.W. Zhao, Sens. Actuators B 183, 556 (2013)CrossRefGoogle Scholar
  9. 9.
    E. Kazuma, T. Tatsuma, Nanoscale 6, 2397 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    D. Ramaccia, S. Arcieri, A. Toscano, F. Bilotti, IEEE J. Sel. Top. Quantum Electron 23, 6900408 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Su, T. Peng, F. Xing, D. Li, C. Fan, Acta Chim. Sin. 75, 1036 (2017)CrossRefGoogle Scholar
  12. 12.
    C. Du, M. Huang, T. Chen, F. Sun, B. Wang, C. He, D. Shi, Sens. Actuators B 203, 812 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, D.E. Charles, D.M. Ledwith, D. Aherne, S. Cunningham, M. Voisin, W.J. Blau, Y.K. Gun’ko, J.M. Kelly, M.E. Brennan-Fournet, RSC Adv. 4, 29022 (2014)CrossRefGoogle Scholar
  14. 14.
    N. Hooshmand, J.A. Bordley, M.A. El-Sayed, J. Phys. Chem. C 119, 15579 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.G. Sun, Y.N. Xia, Science 298, 2176 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    N. Hooshmand, S.R. Panikkanvalappil, M.A. El-Sayed, J. Phys. Chem. C 120, 20896 (2016)CrossRefGoogle Scholar
  17. 17.
    C.H. Zhang, J. Zhu, J.J. Li, J.W. Zhao, ACS Appl. Mater. Interfaces 9, 17387 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Qi, J. Zhu, J. Li, J. Zhao, J. Nanopart. Res. 18, 190 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Y.G. Sun, Y.N. Xia, J. Am. Chem. Soc. 126, 3892 (2004)CrossRefGoogle Scholar
  20. 20.
    M.A. Mahmoud, B. Snyder, M.A. El-Sayed, J. Phys. Chem. C 114, 7436 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Au, Y. Chen, F. Zhou, P.H.C. Camargo, B. Lim, Z.Y. Li, D.S. Ginger, Y. Xia, Nano Res. 1, 441 (2008)CrossRefGoogle Scholar
  22. 22.
    J.W. Liaw, J.C. Cheng, C. Ma, R. Zhang, J. Phys. Chem. C 117, 19586 (2013)Google Scholar
  23. 23.
    Z.P. Zhang, Y. Wang, S.H. Xu, Y.N. Yu, A. Hussain, Y.Y. Shen, S.R. Guo, J. Mater. Chem. B 5, 5464 (2017)CrossRefGoogle Scholar
  24. 24.
    R.A. Soomro, O.P. Akyuz, R. Ozturk, Z.H. Ibupoto, Sens. Actuators B 233, 230 (2016)CrossRefGoogle Scholar
  25. 25.
    W. Wang, X.S. Hou, X. Li, C. Chen, X.L. Luo, Anal. Chim. Acta 998, 45 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    G. Raschke, S. Brogl, A.S. Susha, A.L. Rogach, T.A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, K. Kürzinger, Nano Lett. 4, 1853 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, S. Xiao, Opt. Commun. 436, 57 (2019)ADSCrossRefGoogle Scholar
  28. 28.
    C.L. Cen, J.J. Chen, C.P. Liang, J. Huang, X.F. Chen, Y.J. Tang, Z. Yi, X.B. Xu, Y.G. Yi, S.Y. Xiao, Physica E 103, 93 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, Y. Yi, Nanomaterials 8, 0568 (2018)CrossRefGoogle Scholar
  30. 30.
    E. Martinsson, M.M. Shahjamali, N. Large, N. Zaraee, Y. Zhou, G.C. Schatz, C.A. Mirkin, D. Aili, Small 12, 330 (2016)CrossRefGoogle Scholar
  31. 31.
    L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Nano Lett. 6, 2060 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 24, 5233 (2008)CrossRefGoogle Scholar
  33. 33.
    M.A. Mahmoud, M.A. El-Sayed, J. Am. Chem. Soc. 132, 12704 (2010)CrossRefGoogle Scholar
  34. 34.
    M.A. Mahmoud, M.A. El-Sayed, Nano Lett. 9, 3025 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Mahmoud, J. Phys. Chem. C 118, 10321 (2014)CrossRefGoogle Scholar
  36. 36.
    J.S. Sekhon, S.S. Verma, J. Mod. Opt. 62, 435 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    M.H. Tu, T. Sun, K.T.V. Grattan, Sens. Actuators B 191, 37 (2014)CrossRefGoogle Scholar
  38. 38.
    Y.G. Sun, Y.N. Xia, Anal. Chem. 74, 5297 (2002)CrossRefGoogle Scholar
  39. 39.
    M. Hu, J.Y. Chen, M. Marquez, Y.N. Xia, G.V. Hartland, J. Phys. Chem. C 111, 12558 (2007)CrossRefGoogle Scholar
  40. 40.
    A.A. Ashkarran, S. Daemi, Plasmonics 11, 1011 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Cao, M. Wang, N. Gu, J. Phys. Chem. C 113, 1217 (2009)CrossRefGoogle Scholar
  42. 42.
    C.M. Ma, R.F. Zhang, J.W. Liaw, J.C. Cheng, Appl. Phys. A 115, 31 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    M.J. Collinge, B.T. Draine, J. Opt. Soc. Am. A 21, 2023 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    M.A. Yurkin, A.G. Hoekstra, J. Quant. Spectrosc. Radiat. Transf. 106, 558 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 25, 2693 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    P.J. Flatau, B.T. Draine, Opt. Express 20, 1247 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    I.O. Sosa, C. Noguez, R.G. Barrera, J. Phys. Chem. B 107, 6269 (2003)CrossRefGoogle Scholar
  48. 48.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)ADSCrossRefGoogle Scholar
  49. 49.
    E.A. Coronado, G.C. Schatza, J. Chem. Phys. 119, 3926 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999)CrossRefGoogle Scholar
  51. 51.
    R.D. Averitt, S.L. Westcott, N.J. Halas, J. Opt. Soc. Am. B Opt. Phys. 16, 1824 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.Y. Li, H. Zhang, Y. Xia, X. Li, Nano Lett. 7, 1318 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    P.K. Jain, M.A. Ei-Sayed, J. Phys. Chem. C 111, 17451 (2007)CrossRefGoogle Scholar
  54. 54.
    J. Zhu, J. Nanopart. Res. 13, 87 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations