Applied Physics A

, 125:56 | Cite as

Determination of magnetic properties of a Ni/NiO/Ni multilayer: an ANFIS-based predictive technique

  • A. Bendjerad
  • A. Benhaya
  • T. Bentrcia
  • F. DjeffalEmail author
  • M. Zergoug
  • F. Smaïli


In this paper, Ni/NiO/Ni multilayers are deposited on glass substrates using radio frequency magnetron sputtering, where the structural and morphological properties are analyzed using X-ray diffraction besides scanning electron microscopy techniques. The associated magnetic hysteresis loops are obtained by vibrating sample magnetometer for temperatures ranging from − 100 to 300 °C. Hence, the parameters α, β, Bmax, HC, and Br defining a hysteresis loop are determined at each temperature using Preisach model for the first two parameters, while the remaining ones are deduced experimentally. The set of these parameters are introduced within the training data set in the context of an ANFIS-based approach to predict the hysteresis loop of a Ni/NiO/Ni multilayer for any temperature below the Curie temperature. The comparison conducted between theoretical and experimental results showed a good agreement. This work provided more insights regarding the consolidation of experimental characterization with the development of soft computing-based frameworks.


  1. 1.
    E.P. Wohlfarth, Handbook of Ferromagnetic Materials, vol 2 (Elsevier, Amsterdam, 1980)Google Scholar
  2. 2.
    A. Bendjerad, A. Benhaya, S. Boukhtache, M. Zergoug, K. Benyahia, Modeling of magnetic properties (Cr/NiO/Ni) based multi-layers deposited by magnetron sputtering using Preisach model. Mater. Devices 2(1), 310–314 (2017)Google Scholar
  3. 3.
    S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, A. Shakin, Effectiveness of the magnetostatic shielding by the cylindrical shells. J. Magn. Magn. Mater. 398, 49–53 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, AC and DC-shielding properties for the Ni80Fe20/Cu film structures. J. Magn. Magn. Mater. 443, 142–148 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    G. Béranger, F. Duffaut, J. Morlet, J.F. Tiers, The Iron-Nickel Alloys: A Hundred Years After the Discovery of Invar (Lavoisier Publisher, Secaucus, 1996)Google Scholar
  6. 6.
    V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues, Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M.H. Kryder, Magnetic thin films for data storage. Thin solid films 216(1), 174–180 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    T. Katase, H. Hiramatsu, T. Kamiya, H. Hosono, Thin film growth by pulsed laserdeposition and properties of 122-type iron-based superconductor AE(Fe1–x Cox)2AS2(AE = alkaline earth). Supercond. Sci. Technol. 25(8), 084015(1–12) (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Cao, K. Xu, W. Jiang, T. Droubay, P. Ramuhalli, D. Edwards, B.R. Johnson, J.M. Cloy, Hysteresis in single and polycrystalline iron thin films: major and minor loops first order reversal curves and Preisach modeling. J. Magn. Magn. Mater. 395, 361–375 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A. Iljinas, J. Dudonis, R. Brucas, A. Meškauskas, Thin ferromagnetic films deposition by facing target sputtering method. Nonlinear Anal. Model. Control 10(1), 57–64 (2005)zbMATHGoogle Scholar
  11. 11.
    G.F. Huang, W.Q. Huang, L.L. Wang, B.S. Zou, J.H. Zhang, Studies on the Fe–P film plating from a chemical bath: deposition mechanism and parameter effects. Int. J. Electrochem. Sci. 3, 145–153 (2008)Google Scholar
  12. 12.
    W. Qing, W. Tai-Hong, L. Cheng-Lu, Vacuum electron-beam evaporation of Fe nanocrystals on Si3N4 buffer layer for carbon nanotube growth. Chin. Phys. Lett. 20(2), 301–303 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    R. Fleurier, Résonance Ferromagnétique et Structure de Nanoparticules Bimétalliques à Base de Fer, PhD Dissertation, University of Orleans, France (2006)Google Scholar
  14. 14.
    D.I. Tishkevich, S.S. Grabchikov, L.S. Tsybulskaya, V.S. Shendyukov, S.S. Perevoznikov, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D.A. Vinnik, Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films. J. Alloys Compd. 735, 1943–1948 (2018)CrossRefGoogle Scholar
  15. 15.
    D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, Correlation of the synthesis conditions and microstructure for Bi-based electron shields production. J. Alloy. Compd. 749, 1036–1042 (2018)CrossRefGoogle Scholar
  16. 16.
    R. Rameshan, V. Vonk, D. Franz, J. Drnec, S. Penner, A. Garhofer, F. Mittendorfer, A. Stierle, B. Klötzer, Role of precursor carbides for graphene growth on Ni(111). Sci. Rep. 8, 2662(1–13) (2018)CrossRefGoogle Scholar
  17. 17.
    B. Lü, Z.-F. Hu, X.-H. Wang, B.-S. Xu, Thermal stability of electrodeposited nanocrystalline nickel assisted by flexible friction. Trans. Nonferrous Met. Soc. China 25(10), 3297–3304 (2015)CrossRefGoogle Scholar
  18. 18.
    C.-L. Ban, X. Shao, H. Chen, Effect of mechanical attrition on microstructure and property of electroplated Ni coating. Trans. Nonferrous Met. Soc. China 22(8), 1989–1994 (2012)CrossRefGoogle Scholar
  19. 19.
    T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, L.V. Panina, S.V. Trukhanov, A.V. Trukhanov, Anomalies in Ni–Fe nanogranular films growth. J. Alloy. Compd. 748, 970–978 (2018)CrossRefGoogle Scholar
  20. 20.
    T.I. Zubar, L.V. Panina, N.N. Kovaleva, S.A. Sharko, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, S.V. Trukhanov, A.V. Trukhanov, Anomalies in growth of electrodeposited Ni–Fe nanogranular films. CrystEngComm 20(16), 2306–2315 (2018)CrossRefGoogle Scholar
  21. 21.
    M.B.A. Tuan, Caractérisation et Modélisation du Comportement des Matériaux Magnétiques Doux Sous Contrainte Thermique, PhD DISSERTATION, Claude Bernard Lyon I University (2011)Google Scholar
  22. 22.
    O. Messal, Caractérisation et Modélisation du Comportement Thermomagnétique d’alliages FeNi pour le Prototypage Virtuel, PhD Dissertation, Claude Bernard Lyon I University (2013)Google Scholar
  23. 23.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, Magneto transport properties and mechanism of the A-site ordering in the Nd–Ba optimal-doped manganites. J. Low Temp. Phys. 149(3–4), 185–199 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. J. Exp. Theor. Phys. 111(2), 209–214 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, Self-doped lanthanum manganites as a phase-separated system: Transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    A. Trukhanov, L. Panina, S. Trukhanov, V. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102 (2016)CrossRefGoogle Scholar
  27. 27.
    F. Preisach, Über die magnetische nachwirkung. Zeitschrift für Physik 94(5–6), 277–302 (1935)ADSCrossRefGoogle Scholar
  28. 28.
    A. Bendjerad, S. Boukhtache, A. Benhaya, A. Lahmar, M. Zergoug, D. Luneau, RF magnetron sputtering deposition of NiO/Ni bilayer and approach of the Magnetic behavior using the Preisach model. J. Magn. Magn. Mater. 428, 377–381 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    A. Bendjerad, S. Boukhtache, A. Benhaya, D. Luneau, S.E. Abaidia, K. Benyahia, Modeling of magnetic properties of iron thin films deposited by RF magnetron sputtering using Preisach model. Serbian J. Electr. Eng. 13(2), 229–238 (2016)CrossRefGoogle Scholar
  30. 30.
    G. Bertotti, M. Pasquale, Physical interpretation of induction and frequency dependence of power losses in soft magnetic materials. IEEE Trans. Magn. 28(5), 2787–2789 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    G. Bertotti, Dynamic generalization of the scalar Preisach model of hysteresis. IEEE Trans. Magn. 28(5), 2599–2601 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    A.K. Lebouc, Matériaux Magnétique en Génie Électrique 2, Hermès Science Edition, Paris, France (2006)Google Scholar
  33. 33.
    F. Djeffal, N. Lakhdar, An improved analog electrical performance of submicron Dual-Material gate (DM) GaAs-MESFETs using multi-objective computation. J. Comput. Electron. 12, 29–35 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Ferhati, F. Djeffal, Role of optimized grooves surface-textured front glass in improving TiO2 thin film UV photodetector performance. IEEE Sens. J. 16, 5618–5624 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    F. Djeffal, S. Guessasma, A. Benhaya, M. Chahdi, An analytical approach based on neural computation to estimate the lifetime of deep submicron MOSFETs. Semicond. Sci. Technol. 20(2), 158–164 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)CrossRefGoogle Scholar
  37. 37.
    S. Kar, S. Das, P.K. Ghosh, Applications of neuro fuzzy systems: a brief review and future outline. Appl. Soft Comput. 15, 243–259 (2014)CrossRefGoogle Scholar
  38. 38.
    Z.J. Viharos, K.B. Kis, Survey on neuro-fuzzy systems and their applications in technical diagnostics and measurement. Measurement 67, 126–136 (2015)CrossRefGoogle Scholar
  39. 39.
    E. Chebaki, F. Djeffal, T. Bentrcia, ANFIS-based approach to predict the degradation-related ageing of Junctionless GAA MOSFET. Mater. Today Proc. 5(8), 15949–15958 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Bendjerad
    • 1
    • 2
  • A. Benhaya
    • 2
  • T. Bentrcia
    • 3
  • F. Djeffal
    • 2
    • 3
    Email author
  • M. Zergoug
    • 4
  • F. Smaïli
    • 4
  1. 1.LEB Research Laboratory, Electrical Engineering DepartmentUniversity of Mostefa Benboulaid-Batna 2BatnaAlgeria
  2. 2.LEA Laboratory, Electronics DepartmentUniversity of Mostefa Benboulaid-Batna 2BatnaAlgeria
  3. 3.LEPCM Laboratory, Physics DepartmentUniversity Hadj Lakhdar-Batna 1BatnaAlgeria
  4. 4.Centre of Welding and Control (C.S.C)ChéragaAlgeria

Personalised recommendations